WATERSHED ECOHYDROLOGICAL MODEL

ECH2O

ECH2O is a spatially-distributed, physically-based model for ecohydrologic studies. It couples together a description of the energy balance with a hydrologic model and a forest growth components.

Regional Hydro-Ecological Simulation System (RHESSYS)

RHESSYS is a GIS-based hydro-ecological modelling framework designed to simulate carbon, water and nutrient fluxes. By combining a set of physically-based process models and a methodology for partitioning and parameterizing the landscape, RHESSYS is capable of modelling the spatial distribution and spatio-temporal interactions between different processes at the watershed scale.

Tethys-Chloris

Tethys-Chloris is a physical-based mechanistic tool developed to account for the coupled interactions of energy-water-vegetation in a variety of environments and climates where water is the key component. Energy and mass exchanges in the atmospheric surface layer are treated thoroughly with an accurate resistance analogy scheme. A simplified module of saturated and unsaturated soil water dynamics governs the subsurface hydrology. Up to two layers of vegetation (e.g. trees and grasses) can be accounted for. In cold environment a snowpack evolution module controls the energy exchanges, the snow accumulation and the snow melting that can be eventually mediated by vegetation interactions. Vegetation structure and dynamics are parsimoniously parameterizes including plant life-cycle processes, photosynthesis, phenology, carbon allocation and tissues turnover.