
Outline
1. Species parameters

2. Forest input

3. Vertical pro�les

4. Soil input

5. Weather input

6. Simulation control

7. Simulation input object

1. Species parameters
Simulation models in medfate require a data.frame with species parameter values.

1. Species parameters
Simulation models in medfate require a data.frame with species parameter values.

The package includes a default data set of parameter values for 217 Mediterranean taxa.

data("SpParamsMED")

1. Species parameters
Simulation models in medfate require a data.frame with species parameter values.

The package includes a default data set of parameter values for 217 Mediterranean taxa.

data("SpParamsMED")

A large number of parameters (124 columns) can be found in SpParamsMED, which may be
intimidating.

1. Species parameters
Simulation models in medfate require a data.frame with species parameter values.

The package includes a default data set of parameter values for 217 Mediterranean taxa.

data("SpParamsMED")

A large number of parameters (124 columns) can be found in SpParamsMED, which may be
intimidating.

You can find parameter definitions in table SpParamsDefinition:

data("SpParamsDefinition")

1. Species parameters
The following table shows parameter definitions and units:

Show 6 entries Search:

ParameterName ParameterGroup Definition Type Units

1 Name Identity Taxon names (species binomials or genus) String

2 IFNcodes Identity Codes in the forest inventory, separated by '/' String

3 SpIndex Identity Species index 0,1,2,� Integer

4 Genus Taxonomic identity Taxonomic genus String

5 Order Taxonomic identity Taxonomical order String

6 Family Taxonomic identity Taxonomical family String

Showing 1 to 6 of 124 entries

Previous 1 2 3 4 5 … 21 Next

2. Forest input
Forest class
Each forest plot is represented in an object of class forest, a list that contains several elements.

forest <- exampleforestMED

2. Forest input
Forest class
Each forest plot is represented in an object of class forest, a list that contains several elements.

forest <- exampleforestMED

The most important items are two data frames, treeData (for trees):

forest$treeData

Species N DBH Height Z50 Z95

1 148 168 37.55 800 100 600

2 168 384 14.60 660 300 1000

2. Forest input
Forest class
Each forest plot is represented in an object of class forest, a list that contains several elements.

forest <- exampleforestMED

The most important items are two data frames, treeData (for trees):

forest$treeData

Species N DBH Height Z50 Z95

1 148 168 37.55 800 100 600

2 168 384 14.60 660 300 1000

and shrubData (for shrubs):

forest$shrubData

Species Cover Height Z50 Z95

1 165 3.75 80 200 1000

2. Forest input
Forest class
The two data frames share many variables...

Tree data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

N
Density of trees (in individuals per
hectare)

DBH Tree diameter at breast height (in cm)

Height Tree total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

2. Forest input
Forest class
The two data frames share many variables...

Tree data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

N
Density of trees (in individuals per
hectare)

DBH Tree diameter at breast height (in cm)

Height Tree total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

Shrub data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

Cover Shrub cover (%)

Height Shrub total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

2. Forest input
Forest class
The two data frames share many variables...

Tree data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

N
Density of trees (in individuals per
hectare)

DBH Tree diameter at breast height (in cm)

Height Tree total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

Shrub data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

Cover Shrub cover (%)

Height Shrub total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

2. Forest input
Forest class
The two data frames share many variables...

Important: medfate's naming conventions for tree cohorts and shrub cohorts uses T or S, the row
number and species numerical code (e.g. "T1_148" for the first tree cohort, corresponding to Pinus
halepensis).

2. Forest input
Creating a 'forest' object from forest inventory data
Forest inventories can be conducted in different ways, which means that the starting form of forest
data is diverse.

2. Forest input
Creating a 'forest' object from forest inventory data
Forest inventories can be conducted in different ways, which means that the starting form of forest
data is diverse.

Building forest objects from inventory data will always require some data wrangling, but package
medfateutils provides functions that may be helpful:

2. Forest input
Creating a 'forest' object from forest inventory data
Forest inventories can be conducted in different ways, which means that the starting form of forest
data is diverse.

Building forest objects from inventory data will always require some data wrangling, but package
medfateutils provides functions that may be helpful:

Function Description

forest_mapShrubTable() Helps filling shrubData table

forest_mapTreeTable() Helps filling treeData table

forest_mapWoodyTables() Helps filling a forest object

IFN2forestlist() Creates a list of forest objects from Spanish forest inventory data

plant_basalArea(forest)

T1_148 T2_168 S1_165

18.604547 6.428755 NA

stand_basalArea(forest)

[1] 25.0333

2. Forest input
Forest attributes
The medfate package includes a number of functions to examine properties of the plants conforming
a forest object:

plant_*: Cohort-level information (species name, id, leaf area index, height...).
species_*: Species-level attributes (e.g. basal area, leaf area index).
stand_*: Stand-level attributes (e.g. basal area).

plant_basalArea(forest)

T1_148 T2_168 S1_165

18.604547 6.428755 NA

stand_basalArea(forest)

[1] 25.0333

plant_LAI(forest, SpParamsMED)

T1_148 T2_168 S1_165

0.96734365 0.86167321 0.03928201

stand_LAI(forest, SpParamsMED)

[1] 1.868299

2. Forest input
Forest attributes
The medfate package includes a number of functions to examine properties of the plants conforming
a forest object:

plant_*: Cohort-level information (species name, id, leaf area index, height...).
species_*: Species-level attributes (e.g. basal area, leaf area index).
stand_*: Stand-level attributes (e.g. basal area).

2. Forest input
Aboveground data
An important information for simulation model is the estimation of initial leaf area index and crown
dimensions for each plant cohort, which is normally done using allometries.

2. Forest input
Aboveground data
An important information for simulation model is the estimation of initial leaf area index and crown
dimensions for each plant cohort, which is normally done using allometries.

We can illustrate this step using function forest2aboveground():

above <- forest2aboveground(forest, SpParamsMED)

above

SP N DBH Cover H CR LAI_live LAI_expanded LAI_dead

T1_148 148 168.0000 37.55 NA 800 0.6605196 0.96734365 0.96734365 0

T2_168 168 384.0000 14.60 NA 660 0.6055642 0.86167321 0.86167321 0

S1_165 165 749.4923 NA 3.75 80 0.8032817 0.03928201 0.03928201 0

where species-specific allometric coefficients are taken from SpParamsMED.

2. Forest input
Aboveground data
An important information for simulation model is the estimation of initial leaf area index and crown
dimensions for each plant cohort, which is normally done using allometries.

We can illustrate this step using function forest2aboveground():

above <- forest2aboveground(forest, SpParamsMED)

above

SP N DBH Cover H CR LAI_live LAI_expanded LAI_dead

T1_148 148 168.0000 37.55 NA 800 0.6605196 0.96734365 0.96734365 0

T2_168 168 384.0000 14.60 NA 660 0.6055642 0.86167321 0.86167321 0

S1_165 165 749.4923 NA 3.75 80 0.8032817 0.03928201 0.03928201 0

where species-specific allometric coefficients are taken from SpParamsMED.

Users will not normally call forest2aboveground(), but is important to understand what is going
on behind the scenes.

vprofile_leafAreaDensity(forest, SpParamsMED)

3. Vertical pro�les
Leaf distribution
Vertical leaf area distribution (at the cohort-, species- or stand-level) can be examined using:

vprofile_leafAreaDensity(forest, SpParamsMED) vprofile_leafAreaDensity(forest, SpParamsMED,

 byCohorts = TRUE, bySpecies = TRUE)

3. Vertical pro�les
Leaf distribution
Vertical leaf area distribution (at the cohort-, species- or stand-level) can be examined using:

vprofile_PARExtinction(forest, SpParamsMED)

3. Vertical pro�les
Radiation extinction
Radiation extinction (PAR or SWR) profile across the vertical axis can also be examined:

vprofile_PARExtinction(forest, SpParamsMED) vprofile_SWRExtinction(forest, SpParamsMED)

3. Vertical pro�les
Radiation extinction
Radiation extinction (PAR or SWR) profile across the vertical axis can also be examined:

3. Vertical pro�les
Belowground root distribution
Users can visually inspect the distribution of fine roots of forest objects by calling function
vprofile_rootDistribution():

vprofile_rootDistribution(forest, SpParamsMED)

3. Vertical pro�les
Interactive forest inspection
Function shinyplot() is a more convenient way to display properties and profiles of forest
objects:

shinyplot(forest, SpParamsMED)

4. Soil input
Soil physical description
Soil physical characteristics are specified using a data.frame with soil layers in rows and attributes
in columns:

widths - layer widths, in mm.
clay - Percentage of clay (within volume of soil particles).
sand - Percentage of sand (within volume of soil particles).
om - Percentage of organic matter per dry weight (within volume of soil particles).
bd - Bulk density (g/cm3)
rfc - Rock fragment content (in whole-soil volume).

4. Soil input
Soil physical description
Soil physical characteristics are specified using a data.frame with soil layers in rows and attributes
in columns:

widths - layer widths, in mm.
clay - Percentage of clay (within volume of soil particles).
sand - Percentage of sand (within volume of soil particles).
om - Percentage of organic matter per dry weight (within volume of soil particles).
bd - Bulk density (g/cm3)
rfc - Rock fragment content (in whole-soil volume).

They can be initialized to default values using function defaultSoilParams():

spar <- defaultSoilParams(2)

print(spar)

widths clay sand om bd rfc

1 300 25 25 NA 1.5 25

2 700 25 25 NA 1.5 45

... and then you should modify default values according to available soil information.

4. Soil input
Drawing soil physical attributes from SoilGrids
SoilGrids is a global database of soil properties:

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, et al. (2017) SoilGrids250m:
Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.

doi:10.1371/journal.pone.0169748.

4. Soil input
Drawing soil physical attributes from SoilGrids
SoilGrids is a global database of soil properties:

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, et al. (2017) SoilGrids250m:
Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.

doi:10.1371/journal.pone.0169748.

Package medfateutils allows retrieving Soilgrids data by connecting with the SoilGrids REST API

4. Soil input
Drawing soil physical attributes from SoilGrids
SoilGrids is a global database of soil properties:

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, et al. (2017) SoilGrids250m:
Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.

doi:10.1371/journal.pone.0169748.

Package medfateutils allows retrieving Soilgrids data by connecting with the SoilGrids REST API

To start with, we need an object of class SpatialPoints (from package sp) containing the
geographic coordinates of our target forest stand:

cc <- matrix(c(1.32, 42.20), nrow=1)

sp <- SpatialPoints(cc, proj4string = CRS(SRS_string = "EPSG:4326"))

4. Soil input
Drawing soil physical attributes from SoilGrids
SoilGrids is a global database of soil properties:

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, et al. (2017) SoilGrids250m:
Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.

doi:10.1371/journal.pone.0169748.

Package medfateutils allows retrieving Soilgrids data by connecting with the SoilGrids REST API

To start with, we need an object of class SpatialPoints (from package sp) containing the
geographic coordinates of our target forest stand:

cc <- matrix(c(1.32, 42.20), nrow=1)

sp <- SpatialPoints(cc, proj4string = CRS(SRS_string = "EPSG:4326"))

We then call soilgridsParams() along with a desired vertical width (in mm) of soil layers:

soilgridsParams(sp, widths = c(300, 700, 1000))

4. Soil input
Soil input object
Soil input for simulations is an object of class soil (a list) that is created from physical description
using a function with the same name:

examplesoil <- soil(spar)

class(examplesoil)

[1] "soil" "list"

4. Soil input
Soil input object
Soil input for simulations is an object of class soil (a list) that is created from physical description
using a function with the same name:

examplesoil <- soil(spar)

class(examplesoil)

[1] "soil" "list"

A print() function has been defined for objects of class soil, that displays several soil parameters
and properties.

examplesoil

Soil depth (mm): 1000

Layer 1 [0 to 300 mm]

clay (%): 25 silt (%): 50 sand (%): 25 organic matter (%): NA [Silt loam]

Rock fragment content (%): 25 Macroporosity (%): 5

Theta WP (%): 14 Theta FC (%): 30 Theta SAT (%): 49 Theta current (%) 30

Vol. WP (mm): 32 Vol. FC (mm): 68 Vol. SAT (mm): 111 Vol. current (mm): 68

Temperature (Celsius): NA

Layer 2 [300 to 1000 mm]

clay (%): 25 silt (%): 50 sand (%): 25 organic matter (%): NA [Silt loam]

Rock fragment content (%): 45 Macroporosity (%): 5

Theta WP (%): 14 Theta FC (%): 30 Theta SAT (%): 49 Theta current (%) 30

Vol. WP (mm): 55 Vol. FC (mm): 117 Vol. SAT (mm): 190 Vol. current (mm): 117

Temperature (Celsius): NA

Total soil saturated capacity (mm): 300

4. Soil input
Water retention curves
The water retention curve is used to represent the relationship between soil water content (; %)
and soil water potential (; MPa).

θ
Ψ

4. Soil input
Water retention curves
The water retention curve is used to represent the relationship between soil water content (; %)
and soil water potential (; MPa).

The following code calls function soil_retentionCurvePlot() to illustrate the difference
between the two water retention models in this soil:

soil_retentionCurvePlot(examplesoil, model="both")

θ
Ψ

5. Weather input
All simulations in the package require daily weather inputs in form of a data.frame with dates as
row.names.

5. Weather input
All simulations in the package require daily weather inputs in form of a data.frame with dates as
row.names.

Variables Units

Mean/maximum/minimum temperature

Precipitation and potential evapo-transpiration (PET)

Mean/maximum/minimum relative humidity %

Radiation

Wind speed

ºC

l ⋅ m−2
⋅ day−1

MJ ⋅ m−2
⋅ day−1

m ⋅ s−1

5. Weather input
All simulations in the package require daily weather inputs in form of a data.frame with dates as
row.names.

Variables Units

Mean/maximum/minimum temperature

Precipitation and potential evapo-transpiration (PET)

Mean/maximum/minimum relative humidity %

Radiation

Wind speed

An example of daily weather data frame:

data(examplemeteo)

head(examplemeteo, 2)

MinTemperature MaxTemperature Precipitation MinRelativeHumidity MaxRelativeHumidity

2001-01-01 -0.5934215 6.287950 4.869109 65.15411 100.0000

2001-01-02 -2.3662458 4.569737 2.498292 57.43761 94.7178

Radiation WindSpeed

2001-01-01 12.89251 2.000000

2001-01-02 13.03079 7.662544

ºC

l ⋅ m−2
⋅ day−1

MJ ⋅ m−2
⋅ day−1

m ⋅ s−1

5. Weather input
All simulations in the package require daily weather inputs in form of a data.frame with dates as
row.names.

Variables Units

Mean/maximum/minimum temperature

Precipitation and potential evapo-transpiration (PET)

Mean/maximum/minimum relative humidity %

Radiation

Wind speed

An example of daily weather data frame:

data(examplemeteo)

head(examplemeteo, 2)

MinTemperature MaxTemperature Precipitation MinRelativeHumidity MaxRelativeHumidity

2001-01-01 -0.5934215 6.287950 4.869109 65.15411 100.0000

2001-01-02 -2.3662458 4.569737 2.498292 57.43761 94.7178

Radiation WindSpeed

2001-01-01 12.89251 2.000000

2001-01-02 13.03079 7.662544

Simulation functions have been designed to accept data frames generated using package meteoland.

ºC

l ⋅ m−2
⋅ day−1

MJ ⋅ m−2
⋅ day−1

m ⋅ s−1

6. Simulation control
The behaviour of simulation models can be controlled using a set of global parameters.

6. Simulation control
The behaviour of simulation models can be controlled using a set of global parameters.

The default parameterization is obtained using function defaultControl():

control <- defaultControl()

6. Simulation control
The behaviour of simulation models can be controlled using a set of global parameters.

The default parameterization is obtained using function defaultControl():

control <- defaultControl()

A large number of control parameters exist:

names(control)

Control parameters should be left to their default values until their effect on simulations is fully
understood!

7. Simulation input object
Simulation functions spwb() and growth() require combining forest, soil, species-parameter and
simulation control inputs into a single input object.

7. Simulation input object
Simulation functions spwb() and growth() require combining forest, soil, species-parameter and
simulation control inputs into a single input object.

The combination can be done via functions forest2spwbInput() and forest2growthInput():

x <- forest2spwbInput(forest, examplesoil, SpParamsMED, control)

7. Simulation input object
Simulation functions spwb() and growth() require combining forest, soil, species-parameter and
simulation control inputs into a single input object.

The combination can be done via functions forest2spwbInput() and forest2growthInput():

x <- forest2spwbInput(forest, examplesoil, SpParamsMED, control)

Having this additional step allows modifying the value of specific parameters or state variables before
calling the simulation functions.

7. Simulation input object
Simulation functions spwb() and growth() require combining forest, soil, species-parameter and
simulation control inputs into a single input object.

The combination can be done via functions forest2spwbInput() and forest2growthInput():

x <- forest2spwbInput(forest, examplesoil, SpParamsMED, control)

Having this additional step allows modifying the value of specific parameters or state variables before
calling the simulation functions.

Function fordyn() is different from the other two models: the user enters forest, soil, weather,
species parameters and simulation control inputs directly into the simulation function.

M.C. Escher - Dragon, 1952

1.3 - Model inputs
Miquel De Cáceres, Victor Granda, Aitor Ameztegui

Ecosystem Modelling Facility

2022-06-13

https://soilgrids.org/
https://soilgrids.org/
https://rest.isric.org/
https://soilgrids.org/
https://rest.isric.org/
https://soilgrids.org/
https://rest.isric.org/
https://emf-creaf.github.io/meteoland/

Outline
1. Species parameters

2. Forest input

3. Vertical pro�les

4. Soil input

5. Weather input

6. Simulation control

7. Simulation input object

1. Species parameters
Simulation models in medfate require a data.frame with species parameter values.

1. Species parameters
Simulation models in medfate require a data.frame with species parameter values.

The package includes a default data set of parameter values for 217 Mediterranean taxa.

data("SpParamsMED")

1. Species parameters
Simulation models in medfate require a data.frame with species parameter values.

The package includes a default data set of parameter values for 217 Mediterranean taxa.

data("SpParamsMED")

A large number of parameters (124 columns) can be found in SpParamsMED, which may be
intimidating.

1. Species parameters
Simulation models in medfate require a data.frame with species parameter values.

The package includes a default data set of parameter values for 217 Mediterranean taxa.

data("SpParamsMED")

A large number of parameters (124 columns) can be found in SpParamsMED, which may be
intimidating.

You can find parameter definitions in table SpParamsDefinition:

data("SpParamsDefinition")

1. Species parameters
The following table shows parameter definitions and units:

Show 6 entries Search:

ParameterName ParameterGroup Definition Type Units

1 Name Identity Taxon names (species binomials or genus) String

2 IFNcodes Identity Codes in the forest inventory, separated by '/' String

3 SpIndex Identity Species index 0,1,2,� Integer

4 Genus Taxonomic identity Taxonomic genus String

5 Order Taxonomic identity Taxonomical order String

6 Family Taxonomic identity Taxonomical family String

Showing 1 to 6 of 124 entries

Previous 1 2 3 4 5 … 21 Next

2. Forest input
Forest class
Each forest plot is represented in an object of class forest, a list that contains several elements.

forest <- exampleforestMED

2. Forest input
Forest class
Each forest plot is represented in an object of class forest, a list that contains several elements.

forest <- exampleforestMED

The most important items are two data frames, treeData (for trees):

forest$treeData

Species N DBH Height Z50 Z95

1 148 168 37.55 800 100 600

2 168 384 14.60 660 300 1000

2. Forest input
Forest class
Each forest plot is represented in an object of class forest, a list that contains several elements.

forest <- exampleforestMED

The most important items are two data frames, treeData (for trees):

forest$treeData

Species N DBH Height Z50 Z95

1 148 168 37.55 800 100 600

2 168 384 14.60 660 300 1000

and shrubData (for shrubs):

forest$shrubData

Species Cover Height Z50 Z95

1 165 3.75 80 200 1000

2. Forest input
Forest class
The two data frames share many variables...

Tree data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

N
Density of trees (in individuals per
hectare)

DBH Tree diameter at breast height (in cm)

Height Tree total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

2. Forest input
Forest class
The two data frames share many variables...

Tree data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

N
Density of trees (in individuals per
hectare)

DBH Tree diameter at breast height (in cm)

Height Tree total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

Shrub data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

Cover Shrub cover (%)

Height Shrub total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

2. Forest input
Forest class
The two data frames share many variables...

Tree data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

N
Density of trees (in individuals per
hectare)

DBH Tree diameter at breast height (in cm)

Height Tree total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

Shrub data

Variable Definition

Species
Species numerical code (should match
SpIndex in SpParams)

Cover Shrub cover (%)

Height Shrub total height (in cm)

Z50
Soil depth corresponding to 50% of fine
roots (mm)

Z95
Soil depth corresponding to 95% of fine
roots (mm)

2. Forest input
Forest class
The two data frames share many variables...

Important: medfate's naming conventions for tree cohorts and shrub cohorts uses T or S, the row
number and species numerical code (e.g. "T1_148" for the first tree cohort, corresponding to Pinus
halepensis).

2. Forest input
Creating a 'forest' object from forest inventory data
Forest inventories can be conducted in different ways, which means that the starting form of forest
data is diverse.

2. Forest input
Creating a 'forest' object from forest inventory data
Forest inventories can be conducted in different ways, which means that the starting form of forest
data is diverse.

Building forest objects from inventory data will always require some data wrangling, but package
medfateutils provides functions that may be helpful:

2. Forest input
Creating a 'forest' object from forest inventory data
Forest inventories can be conducted in different ways, which means that the starting form of forest
data is diverse.

Building forest objects from inventory data will always require some data wrangling, but package
medfateutils provides functions that may be helpful:

Function Description

forest_mapShrubTable() Helps filling shrubData table

forest_mapTreeTable() Helps filling treeData table

forest_mapWoodyTables() Helps filling a forest object

IFN2forestlist() Creates a list of forest objects from Spanish forest inventory data

plant_basalArea(forest)

T1_148 T2_168 S1_165

18.604547 6.428755 NA

stand_basalArea(forest)

[1] 25.0333

2. Forest input
Forest attributes
The medfate package includes a number of functions to examine properties of the plants conforming
a forest object:

plant_*: Cohort-level information (species name, id, leaf area index, height...).
species_*: Species-level attributes (e.g. basal area, leaf area index).
stand_*: Stand-level attributes (e.g. basal area).

plant_basalArea(forest)

T1_148 T2_168 S1_165

18.604547 6.428755 NA

stand_basalArea(forest)

[1] 25.0333

plant_LAI(forest, SpParamsMED)

T1_148 T2_168 S1_165

0.96734365 0.86167321 0.03928201

stand_LAI(forest, SpParamsMED)

[1] 1.868299

2. Forest input
Forest attributes
The medfate package includes a number of functions to examine properties of the plants conforming
a forest object:

plant_*: Cohort-level information (species name, id, leaf area index, height...).
species_*: Species-level attributes (e.g. basal area, leaf area index).
stand_*: Stand-level attributes (e.g. basal area).

2. Forest input
Aboveground data
An important information for simulation model is the estimation of initial leaf area index and crown
dimensions for each plant cohort, which is normally done using allometries.

2. Forest input
Aboveground data
An important information for simulation model is the estimation of initial leaf area index and crown
dimensions for each plant cohort, which is normally done using allometries.

We can illustrate this step using function forest2aboveground():

above <- forest2aboveground(forest, SpParamsMED)

above

SP N DBH Cover H CR LAI_live LAI_expanded LAI_dead

T1_148 148 168.0000 37.55 NA 800 0.6605196 0.96734365 0.96734365 0

T2_168 168 384.0000 14.60 NA 660 0.6055642 0.86167321 0.86167321 0

S1_165 165 749.4923 NA 3.75 80 0.8032817 0.03928201 0.03928201 0

where species-specific allometric coefficients are taken from SpParamsMED.

2. Forest input
Aboveground data
An important information for simulation model is the estimation of initial leaf area index and crown
dimensions for each plant cohort, which is normally done using allometries.

We can illustrate this step using function forest2aboveground():

above <- forest2aboveground(forest, SpParamsMED)

above

SP N DBH Cover H CR LAI_live LAI_expanded LAI_dead

T1_148 148 168.0000 37.55 NA 800 0.6605196 0.96734365 0.96734365 0

T2_168 168 384.0000 14.60 NA 660 0.6055642 0.86167321 0.86167321 0

S1_165 165 749.4923 NA 3.75 80 0.8032817 0.03928201 0.03928201 0

where species-specific allometric coefficients are taken from SpParamsMED.

Users will not normally call forest2aboveground(), but is important to understand what is going
on behind the scenes.

vprofile_leafAreaDensity(forest, SpParamsMED)

3. Vertical pro�les
Leaf distribution
Vertical leaf area distribution (at the cohort-, species- or stand-level) can be examined using:

vprofile_leafAreaDensity(forest, SpParamsMED) vprofile_leafAreaDensity(forest, SpParamsMED,

 byCohorts = TRUE, bySpecies = TRUE)

3. Vertical pro�les
Leaf distribution
Vertical leaf area distribution (at the cohort-, species- or stand-level) can be examined using:

vprofile_PARExtinction(forest, SpParamsMED)

3. Vertical pro�les
Radiation extinction
Radiation extinction (PAR or SWR) profile across the vertical axis can also be examined:

vprofile_PARExtinction(forest, SpParamsMED) vprofile_SWRExtinction(forest, SpParamsMED)

3. Vertical pro�les
Radiation extinction
Radiation extinction (PAR or SWR) profile across the vertical axis can also be examined:

3. Vertical pro�les
Belowground root distribution
Users can visually inspect the distribution of fine roots of forest objects by calling function
vprofile_rootDistribution():

vprofile_rootDistribution(forest, SpParamsMED)

3. Vertical pro�les
Interactive forest inspection
Function shinyplot() is a more convenient way to display properties and profiles of forest
objects:

shinyplot(forest, SpParamsMED)

4. Soil input
Soil physical description
Soil physical characteristics are specified using a data.frame with soil layers in rows and attributes
in columns:

widths - layer widths, in mm.
clay - Percentage of clay (within volume of soil particles).
sand - Percentage of sand (within volume of soil particles).
om - Percentage of organic matter per dry weight (within volume of soil particles).
bd - Bulk density (g/cm3)
rfc - Rock fragment content (in whole-soil volume).

4. Soil input
Soil physical description
Soil physical characteristics are specified using a data.frame with soil layers in rows and attributes
in columns:

widths - layer widths, in mm.
clay - Percentage of clay (within volume of soil particles).
sand - Percentage of sand (within volume of soil particles).
om - Percentage of organic matter per dry weight (within volume of soil particles).
bd - Bulk density (g/cm3)
rfc - Rock fragment content (in whole-soil volume).

They can be initialized to default values using function defaultSoilParams():

spar <- defaultSoilParams(2)

print(spar)

widths clay sand om bd rfc

1 300 25 25 NA 1.5 25

2 700 25 25 NA 1.5 45

... and then you should modify default values according to available soil information.

4. Soil input
Drawing soil physical attributes from SoilGrids
SoilGrids is a global database of soil properties:

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, et al. (2017) SoilGrids250m:
Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.

doi:10.1371/journal.pone.0169748.

https://soilgrids.org/

4. Soil input
Drawing soil physical attributes from SoilGrids
SoilGrids is a global database of soil properties:

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, et al. (2017) SoilGrids250m:
Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.

doi:10.1371/journal.pone.0169748.

Package medfateutils allows retrieving Soilgrids data by connecting with the SoilGrids REST API

https://soilgrids.org/
https://rest.isric.org/

4. Soil input
Drawing soil physical attributes from SoilGrids
SoilGrids is a global database of soil properties:

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, et al. (2017) SoilGrids250m:
Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.

doi:10.1371/journal.pone.0169748.

Package medfateutils allows retrieving Soilgrids data by connecting with the SoilGrids REST API

To start with, we need an object of class SpatialPoints (from package sp) containing the
geographic coordinates of our target forest stand:

cc <- matrix(c(1.32, 42.20), nrow=1)

sp <- SpatialPoints(cc, proj4string = CRS(SRS_string = "EPSG:4326"))

https://soilgrids.org/
https://rest.isric.org/

4. Soil input
Drawing soil physical attributes from SoilGrids
SoilGrids is a global database of soil properties:

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, et al. (2017) SoilGrids250m:
Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.

doi:10.1371/journal.pone.0169748.

Package medfateutils allows retrieving Soilgrids data by connecting with the SoilGrids REST API

To start with, we need an object of class SpatialPoints (from package sp) containing the
geographic coordinates of our target forest stand:

cc <- matrix(c(1.32, 42.20), nrow=1)

sp <- SpatialPoints(cc, proj4string = CRS(SRS_string = "EPSG:4326"))

We then call soilgridsParams() along with a desired vertical width (in mm) of soil layers:

soilgridsParams(sp, widths = c(300, 700, 1000))

https://soilgrids.org/
https://rest.isric.org/

4. Soil input
Soil input object
Soil input for simulations is an object of class soil (a list) that is created from physical description
using a function with the same name:

examplesoil <- soil(spar)

class(examplesoil)

[1] "soil" "list"

4. Soil input
Soil input object
Soil input for simulations is an object of class soil (a list) that is created from physical description
using a function with the same name:

examplesoil <- soil(spar)

class(examplesoil)

[1] "soil" "list"

A print() function has been defined for objects of class soil, that displays several soil parameters
and properties.

examplesoil

Soil depth (mm): 1000

Layer 1 [0 to 300 mm]

clay (%): 25 silt (%): 50 sand (%): 25 organic matter (%): NA [Silt loam]

Rock fragment content (%): 25 Macroporosity (%): 5

Theta WP (%): 14 Theta FC (%): 30 Theta SAT (%): 49 Theta current (%) 30

Vol. WP (mm): 32 Vol. FC (mm): 68 Vol. SAT (mm): 111 Vol. current (mm): 68

Temperature (Celsius): NA

Layer 2 [300 to 1000 mm]

clay (%): 25 silt (%): 50 sand (%): 25 organic matter (%): NA [Silt loam]

Rock fragment content (%): 45 Macroporosity (%): 5

Theta WP (%): 14 Theta FC (%): 30 Theta SAT (%): 49 Theta current (%) 30

Vol. WP (mm): 55 Vol. FC (mm): 117 Vol. SAT (mm): 190 Vol. current (mm): 117

Temperature (Celsius): NA

Total soil saturated capacity (mm): 300

4. Soil input
Water retention curves
The water retention curve is used to represent the relationship between soil water content (; %)
and soil water potential (; MPa).

θ

Ψ

4. Soil input
Water retention curves
The water retention curve is used to represent the relationship between soil water content (; %)
and soil water potential (; MPa).

The following code calls function soil_retentionCurvePlot() to illustrate the difference
between the two water retention models in this soil:

soil_retentionCurvePlot(examplesoil, model="both")

θ

Ψ

5. Weather input
All simulations in the package require daily weather inputs in form of a data.frame with dates as
row.names.

5. Weather input
All simulations in the package require daily weather inputs in form of a data.frame with dates as
row.names.

Variables Units

Mean/maximum/minimum temperature

Precipitation and potential evapo-transpiration (PET)

Mean/maximum/minimum relative humidity %

Radiation

Wind speed

ºC

l ⋅ m−2
⋅ day−1

MJ ⋅ m−2
⋅ day−1

m ⋅ s−1

5. Weather input
All simulations in the package require daily weather inputs in form of a data.frame with dates as
row.names.

Variables Units

Mean/maximum/minimum temperature

Precipitation and potential evapo-transpiration (PET)

Mean/maximum/minimum relative humidity %

Radiation

Wind speed

An example of daily weather data frame:

data(examplemeteo)

head(examplemeteo, 2)

MinTemperature MaxTemperature Precipitation MinRelativeHumidity MaxRelativeHumidity

2001-01-01 -0.5934215 6.287950 4.869109 65.15411 100.0000

2001-01-02 -2.3662458 4.569737 2.498292 57.43761 94.7178

Radiation WindSpeed

2001-01-01 12.89251 2.000000

2001-01-02 13.03079 7.662544

ºC

l ⋅ m−2
⋅ day−1

MJ ⋅ m−2
⋅ day−1

m ⋅ s−1

5. Weather input
All simulations in the package require daily weather inputs in form of a data.frame with dates as
row.names.

Variables Units

Mean/maximum/minimum temperature

Precipitation and potential evapo-transpiration (PET)

Mean/maximum/minimum relative humidity %

Radiation

Wind speed

An example of daily weather data frame:

data(examplemeteo)

head(examplemeteo, 2)

MinTemperature MaxTemperature Precipitation MinRelativeHumidity MaxRelativeHumidity

2001-01-01 -0.5934215 6.287950 4.869109 65.15411 100.0000

2001-01-02 -2.3662458 4.569737 2.498292 57.43761 94.7178

Radiation WindSpeed

2001-01-01 12.89251 2.000000

2001-01-02 13.03079 7.662544

Simulation functions have been designed to accept data frames generated using package meteoland.

ºC

l ⋅ m−2
⋅ day−1

MJ ⋅ m−2
⋅ day−1

m ⋅ s−1

https://emf-creaf.github.io/meteoland/

6. Simulation control
The behaviour of simulation models can be controlled using a set of global parameters.

6. Simulation control
The behaviour of simulation models can be controlled using a set of global parameters.

The default parameterization is obtained using function defaultControl():

control <- defaultControl()

6. Simulation control
The behaviour of simulation models can be controlled using a set of global parameters.

The default parameterization is obtained using function defaultControl():

control <- defaultControl()

A large number of control parameters exist:

names(control)

Control parameters should be left to their default values until their effect on simulations is fully
understood!

7. Simulation input object
Simulation functions spwb() and growth() require combining forest, soil, species-parameter and
simulation control inputs into a single input object.

7. Simulation input object
Simulation functions spwb() and growth() require combining forest, soil, species-parameter and
simulation control inputs into a single input object.

The combination can be done via functions forest2spwbInput() and forest2growthInput():

x <- forest2spwbInput(forest, examplesoil, SpParamsMED, control)

7. Simulation input object
Simulation functions spwb() and growth() require combining forest, soil, species-parameter and
simulation control inputs into a single input object.

The combination can be done via functions forest2spwbInput() and forest2growthInput():

x <- forest2spwbInput(forest, examplesoil, SpParamsMED, control)

Having this additional step allows modifying the value of specific parameters or state variables before
calling the simulation functions.

7. Simulation input object
Simulation functions spwb() and growth() require combining forest, soil, species-parameter and
simulation control inputs into a single input object.

The combination can be done via functions forest2spwbInput() and forest2growthInput():

x <- forest2spwbInput(forest, examplesoil, SpParamsMED, control)

Having this additional step allows modifying the value of specific parameters or state variables before
calling the simulation functions.

Function fordyn() is different from the other two models: the user enters forest, soil, weather,
species parameters and simulation control inputs directly into the simulation function.

M.C. Escher - Dragon, 1952

