
Intro R piping
Roberto Molowny-Horas

April 24-25, 2023

Piping. What is it?
The Wikipedia (https://en.wikipedia.org/wiki/Pipeline_(software)
(https://en.wikipedia.org/wiki/Pipeline_(software))) provides a useful definition for the use of pipelines in
programming:

“A pipeline consists of a chain of processing elements (processes, threads,
coroutines, functions, etc.), arranged so that the output of each element is the
input of the next”

The pipe operator is a recent addition to the base-R universe (that is, it is built into the R code). Previously, the
package magrittr offered an implementation of a pipe operator with syntax %>%. However, starting from R
version 4.1.0, piping can be done natively in R with the operator |>, which avoids loading external packages.
Their functionalities are very similar, so it should be hassle-free to make changes to your codes in case you
have used magrittr before.

Yes, but… what is it, really?
The concept of “piping” comes from Unix. In simple words, by means of a pipeline we give or direct one data
structure as input to a function or process. That data structure, in turn, may be an output from another process.
This is usually read as a left-to-right expression, like e.g.:

c(4, 5) |> mean()

In this line we have already introduced |>, the pipe operator in base-R. If you have installed the magrittr R
package in your computer, you may try like this (although I would recommend sticking with the base-R
implementation):

library(magrittr)

c(4, 5) %>% mean()

Or, if you want to avoid loading the magrittr R package in advance:

`%>%` <- magrittr::`%>%`

c(4, 5) %>% mean()

However, the implementation of the pipe operator in base-R is simpler and more convenient, without
unnecessary dependences on external packages.

Advantages
We can easily read expressions from left to right.
We can also avoid long expressions with multiple nested functions and parentheses.

https://en.wikipedia.org/wiki/Pipeline_(software)

We can quickly add further steps (i.e. function calls) to an expression.

One example:

x <- runif(10)

y1 <- cumsum(exp(diff(log(sort(x)))))

y2 <- x |> sort() |> log() |> diff() |> exp() |> cumsum()

Another example:

breaks <- seq(-10, 10, by = .1)

x <- rnorm(10000)

h1 <- mean(hist(x, breaks = breaks, plot=F)$density)

h2 <- x |> hist(, breaks = breaks, plot=F) |> getElement("density") |> mean()

Sometimes we may want to pipe into two or more functions. In R it is very quick and easy to create an
anonymous function that is called only when needed, and it is destroyed/eliminated afterwards:

h1 <- x |> hist(, breaks = breaks, plot=F) |> getElement("density") |>

 (function(z) {c(mean(z), sd(z))})()

h2 <- x |> hist(, breaks = breaks, plot=F) |> getElement("density") |>

 (\(z) {c(mean(z), sd(z))})()

A more complex use of pipelines in R would involve the lm() linear regression function. An example:

data("iris")

r1 <- lm(Sepal.Width ~ Sepal.Length, data = iris)

r2 <- iris |> with(lm(Sepal.Width ~ Sepal.Length))

r3 <- iris |> (function(dat, foo) {lm(foo, dat)}) (Sepal.Width ~ Sepal.Length)

r4 <- iris |> (\(dat, foo) {lm(foo, dat)}) (Sepal.Width ~ Sepal.Length)

Does not work! r4 <- iris |> (\(dat, foo) {lm(dat, foo)}) (Sepal.Width ~ Sepal.Leng

th)

Neither does this! r4 <- iris |> (\(foo, dat) {lm(foo, dat)}) (Sepal.Width ~ Sepal.

Length)

Sometimes the use of pipelines may not be advantageous in terms of code comprehensibility or debugging.
However, once we start working within the tidy universe with tidy data, pipes come in handy and thus become
a very useful tool.

