
Intro R conditional executions and loops
Roberto Molowny-Horas

April 24-25, 2023

Conditional executions
Similar to other programming languages, R has commands to perform conditional executions. That allows us
to select subsets of the original data set that satisfy a set of conditions.

a <- 1:3

if ((a[1]>0 & a[1]<=2)) b <- 4 else b <- 3 # if larger than 0 and smaller than,

or equal to, 2.

if ((a[1]==0 | a[1]==2)) b <- 4 else b <- 3 # if equal to 0 or equal to 2.

if (a[1]!=0) b <- 4 else b <- 3 # if not equal to 0.

Vectorization.

a <- rnorm(1000)

b <- (a>1.96)*1 + (-1.96<=a & a<=1.96)*0 + (-1)*(a<(-1.96))

hist(b)

Exercise 1. Create a small data frame with two columns. Column #1 will contain
numbers from 1 to 20 in increasing order. Column #2 will contain text stating that the
corresponding number in column #1 is even or odd. Use R function round to check
for evenness or oddness.

Loops
In R, as in other computer languages, a loop is a way of repeatedly carrying out tasks or computations over the
elements of a data set or a data structure. In R many of those loops can be vectorized, which saves much
computing time and allows a better code readability. In other cases, although vectorization may not be
possible, R provides many loop functions, like e.g. for, sapply, lapply, tapply, vapply, replicate. Conditional
loops, i.e. loops which stop only after one or several conditions are met, can also be implemented with while
or repeat.

Below we will briefly explore the usage of for, which is the most explicit and, probably, the most intuitive of all
looping functions. If time or code readability are not your concerns, for is probably good enough in most cases.
However, we recommend that you have a look at the help pages of the other functions, as well as the many
teaching resources on the internet, for more information.

Without further ado, let’s show an example of the use of for.

a <- runif(10)

b1 <- vector("numeric", length(10))

for (i in 1:10) {

 if (a[i] > .5) {

 b1[i] <- 1

 } else {

 b1[i] <- 0

 }

}

This can also be done in a vectorized way.

b2 <- ifelse(a>.5,1,0) # The simplest way.

b3 <- as.numeric(a>.5) # The more compact way.

If you are interested in knowing how it would work with sapply, this is how (although in this particular case, the
vectorized way should be our preferred choice).

b4 <- sapply(1:10, function(i) (a[i]>.5)*1)

Finally, the apply function may be useful when trying to calculate along the indices of a matrix or data.frame.

a <- matrix(runif(1000*100), 1000, 100)

ma <- apply(a, 1, sum) # Keep each row fixed and sum over the corresponding 100 co

lumns.

qa <- apply(a, 2, function(x) quantile(x, probs = .5))

*Exercise. Do “data(iris)” and use function sapply to calculate the average value of
the first 4 columns.

