
Intro R read and write on disk
Roberto Molowny-Horas

April 24-25, 2023

Reading and writing ASCII .csv files
One of the most common ways of reading data from files is the use of the function read.table and its
derivatives read.csv, read.csv2 (see also read.delim and read.delim2). We’ll see how they work.

out <- read.table(file="Example1.csv",header=T)

As we can see, it is important that we specify all characteristics of the .csv file that may affect the way R reads
it. In this case, the default separation is a semicolon and we have to ask read.table to take that into account.
Finally, keep in mind that files containing real numbers may use a decimal separator (i.e. comma or point)
depending on the local settings of your computer. If that is not specified, numbers may be completely wrong.

out <- read.table(file="Example1.csv",header=T,sep=";",dec=".")

To write data to disk we can use write.table, write.csv or write.csv2.

x <- sample(10:20,100,replace=T)

l <- data.frame(Age=x,Height=135+(x-10)*3.5)

l[["Country"]] <- sample(c("Spain","Norway","Australia"),100,replace=T)

l[["Sex"]] <- sample(c("Male","Female","Unknown"),100,replace=T)

write.table(l,file="Example course R.csv",dec=".",sep=";",row.names=F)

Reading and writing .xls or .xlsx files
If, instead of an ASCII file, we have been given an Excel .xls or .xlsx file, we can read it by using the Import
Dataset functionality imbedded in RStudio, which utilizes the readxl R package. For writing, however, readxl
does not include any functionality, so we must turn to other packages like e.g. openxlsx.

install.packages("openxlsx")

library(openxlsx)

a <- openxlsx::read.xlsx("Tree-plot data.xlsx")

Writing is, in this case, far more complicated. We must create a new Excel workbook, add a new worksheet,
write the data and save it.

wb <- openxlsx::createWorkbook("Myself") # Use your own name or any other.

openxlsx::addWorksheet(wb, "Data selection")

b <- a[a$Plot != "A",] # Only plots of type B and C.

openxlsx::writeData(wb, "Data selection", b, colNames = T, rowNames = F)

openxlsx::saveWorkbook(wb, file="My example openxlsx.xlsx", overwrite = T)

Functions save and load
An interesting way of saving whatever objects and stuff we have generated is save. With save you can choose
what you want to save for latter, unlike save.image() (see below), and the result can be read back with load.

save(a, b, file = "An example of the save and load functions.Rdata", compress = T)

load(file = "An example of the save and load functions.Rdata")

Function save.image()
R keeps a log of all commands you have entered during your session and also has all variables available
(unless you have erased them) in your working environment. It may be very useful to save all the work you
have done so far, variables included, in a file for later, so that you can come back to the very same working
environment. This can be achieved with save.image(), which saves everything onto disk exactly as it is. Notice
that such file can use up significant disk space and take long time to write. For the former you may use
compress and compression_level input parameters, whereas for the latter there is no solution but to wait
until it finishes.

*Exercise. Create a 500x500 matrix and save it twice with save and with two different
compression levels (see ?save for help). Compare their size on disk.

