
Introduction to meteoland

Miquel De Cáceres, Victor Granda Ecosystem Modelling Facility 2022-11-30

Outline

1. Introduction

a. Purpose, installation and documentation

b. Data structures and main functions

Outline

1. Introduction

a. Purpose, installation and documentation
 b. Data structures and main functions
 2. Spatial interpolation

 a. General interpolation procedure
 b. Interpolation of weather variables
 c. Interpolation parameters

Outline

1. Introduction

a. Purpose, installation and documentation
b. Data structures and main functions **2. Spatial interpolation**a. General interpolation procedure
b. Interpolation of weather variables
c. Interpolation parameters

3. Estimation of additional variables

Purpose

The R package **meteoland** (De Cáceres et al., 2018) provides utilities to estimate daily weather variables at any position over complex terrains.

Purpose

The R package **meteoland** (De Cáceres et al., 2018) provides utilities to estimate daily weather variables at any position over complex terrains.

The package was designed to assist the following tasks:

- **Spatial interpolation** of *daily* weather records from meteorological stations.
- Statistical correction of meteorological data series (e.g. from climate models).
- Multisite and multivariate stochastic weather generation.

Purpose

The R package **meteoland** (De Cáceres et al., 2018) provides utilities to estimate daily weather variables at any position over complex terrains.

The package was designed to assist the following tasks:

- **Spatial interpolation** of *daily* weather records from meteorological stations.
- Statistical correction of meteorological data series (e.g. from climate models).
- Multisite and multivariate stochastic weather generation.

NOTE: Important modifications in the package made in **ver. 2.0** have led to a completely new set of functions for spatial interpolation. At the same time, previous functions for statistical correction and weather generation have been deprecated.

Installation

Package meteoland can be found at CRAN and installed via:

install.packages("meteoland")

Installation

Package meteoland can be found at CRAN and installed via:

```
install.packages("meteoland")
```

Latest stable versions can also be downloaded and installed from GitHub as follows (package remotes should be installed first):

```
remotes::install_github("emf-creaf/meteoland")
```

Installation

Package meteoland can be found at CRAN and installed via:

```
install.packages("meteoland")
```

Latest stable versions can also be downloaded and installed from GitHub as follows (package remotes should be installed first):

```
remotes::install_github("emf-creaf/meteoland")
```

Users can force the inclusion of vignettes in the installation:

Installation

Package meteoland can be found at CRAN and installed via:

```
install.packages("meteoland")
```

Latest stable versions can also be downloaded and installed from GitHub as follows (package remotes should be installed first):

```
remotes::install_github("emf-creaf/meteoland")
```

Users can force the inclusion of vignettes in the installation:

Documentation

Additional articles can be found at the package website.

Detailed documentation on **meteoland** calculation routines can be found at:

https://emf-creaf.github.io/meteolandbook/index.html

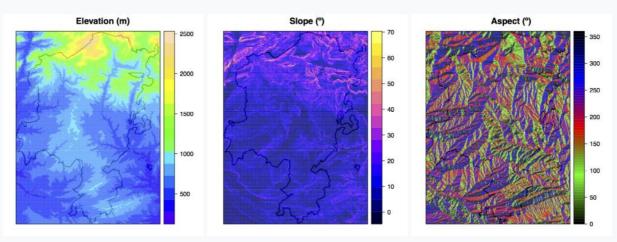
Weather data frames

R name	Definition	Units
DOY	Day of the year	[1-366]
MeanTemperature	Mean daily temperature	$^{\circ}\mathrm{C}$
MinTemperature	Minimum daily temperature	$^{\circ}\mathrm{C}$
MaxTemperature	Maximum daily temperature	$^{\circ}\mathrm{C}$
Precipitation	Daily precipitation	mm
MeanRelativeHumidity	Mean daily relative humidity	%
MinRelativeHumidity	Minimum daily relative humidity	%
MaxRelativeHumidity	Maximum daily relative humidity	%
Radiation	Incoming shortwave solar radiation	$MJ\cdot m^2$
MaxRelativeHumidity	Maximum daily relative humidity	%
WindSpeed	Wind speed	$m \cdot s^{-1}$
WindDirection	Wind direction $^{\circ}$	
PET	Potential evapo-transpiration	mm

Target topography

Spatial structures

- **Points/polygons**: sf objects with target geometries as rows and topographic variables as columns
- **Raster**: stars objects with topographic variables as attributes and space dimensions


Target topography

Spatial structures

- Points/polygons: sf objects with target geometries as rows and topographic variables as columns
- **Raster**: stars objects with topographic variables as attributes and space dimensions

Topographic variables

- elevation (in meters)
- slope (in degrees from the horizontal plane)
- aspect (in degrees from North)

Weather data

Reference point weather data

• sf objects with daily weather variables as columns and time (i.e. Date or POSIXct objects) specified in a column called dates.

Weather data

Reference point weather data

• sf objects with daily weather variables as columns and time (i.e. Date or POSIXct objects) specified in a column called dates.

Interpolated weather data

- **Points/polygons:** sf objects with weather data frames in a special column called interpolated_data
- **Raster**: stars objects with weather variables as attributes and space/time dimensions

Main functions

Interpolation

R function	Description
with_meteo()	Checks reference weather data integrity
<pre>create_meteo_interpolator()</pre>	Creates object containing weather reference data
<pre>interpolator_calibration()</pre>	Calibration of interpolation parameters
<pre>interpolate_data()</pre>	Interpolates weather data over target points/area

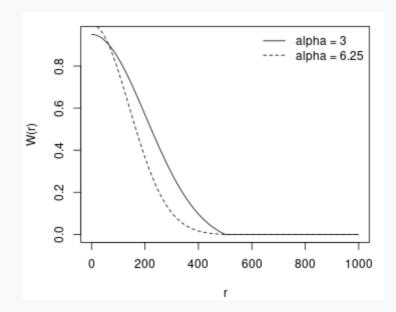
Main functions

Interpolation

R function	Description
with_meteo()	Checks reference weather data integrity
<pre>create_meteo_interpolator()</pre>	Creates object containing weather reference data
<pre>interpolator_calibration()</pre>	Calibration of interpolation parameters
<pre>interpolate_data()</pre>	Interpolates weather data over target points/area

Low-level utility functions

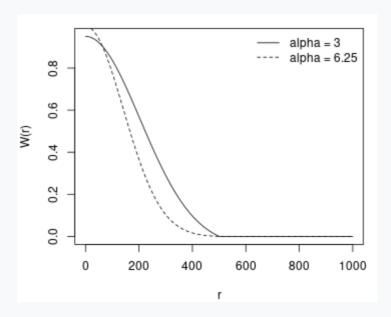
R function	Description	
radiation_*()	Set of functions used in the calculation of incoming solar radiation and net radiation.	
utils_*()	Set of functions used in the calculation of physical variables.	
humidity_*()	Set of utility functions for air humidity.	
penman()	Calculation of potential evapotranspiration using Penman's formula.	



• The general procedure for interpolation is a form of **distance-weighted interpolation** and was developed by Thornton, Running and White (1997).

- The general procedure for interpolation is a form of **distance-weighted interpolation** and was developed by Thornton, Running and White (1997).
- It is based on a **truncated Gaussian filter** with respect to a central point *p*:

$$W(r)=e^{-lpha\cdot (r/R_p)^2}-e^{-lpha}$$

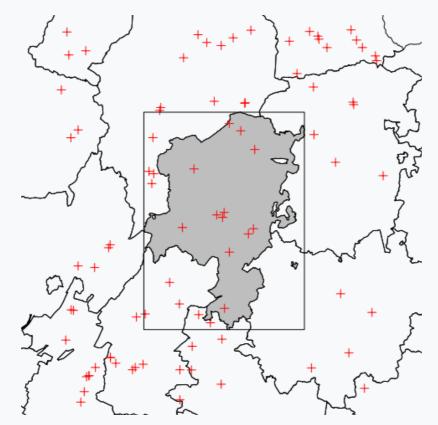

• Here r is the radial distance from p, R_p is the truncation distance and α is the **shape parameter**.

- The general procedure for interpolation is a form of **distance-weighted interpolation** and was developed by Thornton, Running and White (1997).
- It is based on a **truncated Gaussian filter** with respect to a central point *p*:

$$W(r)=e^{-lpha\cdot (r/R_p)^2}-e^{-lpha}$$

• Here r is the radial distance from p, R_p is the truncation distance and α is the **shape parameter**.

• The spatial convolution of this filter with a set of reference stations results, for each target point, in a vector of **weights** (W).



• R_p is automatically adjusted from an initial estimate ($R_{p,initial}$) so that it has lower values in data-rich regions and is increased in data-poor regions.

- R_p is automatically adjusted from an initial estimate ($R_{p,initial}$) so that it has lower values in data-rich regions and is increased in data-poor regions.
- The method, however, requires the user to specify N, the **average number of observations** to be included.

- R_p is automatically adjusted from an initial estimate ($R_{p,initial}$) so that it has lower values in data-rich regions and is increased in data-poor regions.
- The method, however, requires the user to specify N, the **average number of observations** to be included.

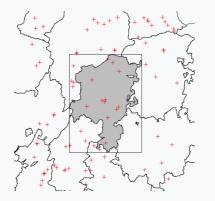
Temperature

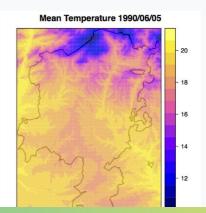
• Prediction of temperature requires a correction for the effects of **elevation differences** between the elevation at reference stations, z_1, \ldots, z_n , and the elevation at the prediction point, z_p .

Temperature

- Prediction of temperature requires a correction for the effects of **elevation differences** between the elevation at reference stations, z_1, \ldots, z_n , and the elevation at the prediction point, z_p .
- Instead of regressing z_i on T_i , the independent variable is the **difference in elevations** associated with a pair of stations, and the dependent variable is the corresponding **difference in temperatures**:

$$(T_1-T_2)=eta_0+eta_1\cdot(z_1-z_2)$$


Temperature


- Prediction of temperature requires a correction for the effects of **elevation differences** between the elevation at reference stations, z_1, \ldots, z_n , and the elevation at the prediction point, z_p .
- Instead of regressing z_i on T_i , the independent variable is the **difference in elevations** associated with a pair of stations, and the dependent variable is the corresponding **difference in temperatures**:

$$(T_1-T_2)=eta_0+eta_1\cdot(z_1-z_2)$$

• The temperature for the target point, T_p is finally predicted using a weighted regression:

$$T_p = rac{\sum_{i=1}^n W_i \cdot \left(T_i + eta_0 + eta_1 \cdot (z_p - z_i)
ight)}{\sum_{i=1}^n W_i}$$

Precipitation

Predictions of precipitation are complicated by the need to predict both **precipitation occurrence** and, conditioned on this, **precipitation amount**.

Precipitation event

• The precipitation occurrence probability POP_p is:

$$POP_p = rac{\sum_{i=1}^n W_{o,i} \cdot PO_i}{\sum_{i=1}^n W_{o,i}}$$

Precipitation

Predictions of precipitation are complicated by the need to predict both **precipitation occurrence** and, conditioned on this, **precipitation amount**.

Precipitation event

• The precipitation occurrence probability POP_p is:

$$POP_p = rac{\sum_{i=1}^n W_{o,i} \cdot PO_i}{\sum_{i=1}^n W_{o,i}}$$

• Once POP_p is calculated, then precipitation occurs if $POP_p < 0.5$.

Precipitation

Predictions of precipitation are complicated by the need to predict both **precipitation occurrence** and, conditioned on this, **precipitation amount**.

Precipitation event

• The precipitation occurrence probability POP_p is:

$$POP_p = rac{\sum_{i=1}^n W_{o,i} \cdot PO_i}{\sum_{i=1}^n W_{o,i}}$$

• Once POP_p is calculated, then precipitation occurs if $POP_p < 0.5$.

Precipitation amount

• Prediction of precipitation amount includes a correction for the effects of **elevation differences**.

Precipitation

Predictions of precipitation are complicated by the need to predict both **precipitation occurrence** and, conditioned on this, **precipitation amount**.

Precipitation event

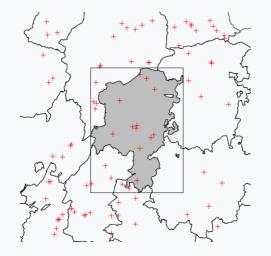
• The precipitation occurrence probability POP_p is:

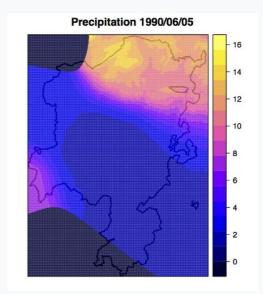
$$POP_p = rac{\sum_{i=1}^n W_{o,i} \cdot PO_i}{\sum_{i=1}^n W_{o,i}}$$

• Once POP_p is calculated, then precipitation occurs if $POP_p < 0.5$.

Precipitation amount

- Prediction of precipitation amount includes a correction for the effects of **elevation differences**.
- The dependent variable in the regression function is defined as the normalized difference of the precipitation observations P_i for any given pair of stations:


$$\left(rac{P_1-P_2}{P_1+P_2}
ight)=eta_0+eta_1\cdot(z_1-z_2)\,.$$


Precipitation

- To obtain the predicted daily total P_p we use the following equation:

$$P_p = rac{\sum_{i=1}^n W_{o,i} \cdot P_i \cdot PO_i \cdot \left(rac{1+f}{1-f}
ight)}{\sum_{i=1}^n W_{o,i} \cdot PO_i}$$

• Here,
$$f=eta_0+eta_1\cdot(z_p-z_i).$$

Relative humidity

• When input station weather data does not include relative humidity, **meteoland** estimates it directly from minimum and maximum temperature.

Relative humidity

- When input station weather data does not include relative humidity, **meteoland** estimates it directly from minimum and maximum temperature.
- When relative humidity has been measured at weather stations, interpolation should be preferred.

Relative humidity

- When input station weather data does not include relative humidity, **meteoland** estimates it directly from minimum and maximum temperature.
- When relative humidity has been measured at weather stations, interpolation should be preferred.
- Since relative humidity depends on temperature, interpolation is done on **dew-point temperature**, i.e. the temperature corresponding to a water vapor saturation.

Relative humidity

- When input station weather data does not include relative humidity, **meteoland** estimates it directly from minimum and maximum temperature.
- When relative humidity has been measured at weather stations, interpolation should be preferred.
- Since relative humidity depends on temperature, interpolation is done on **dew-point temperature**, i.e. the temperature corresponding to a water vapor saturation.
- Unlike temperature and precipitation, dew-point temperature is not corrected for elevation differences.

Relative humidity

- When input station weather data does not include relative humidity, **meteoland** estimates it directly from minimum and maximum temperature.
- When relative humidity has been measured at weather stations, interpolation should be preferred.
- Since relative humidity depends on temperature, interpolation is done on **dew-point temperature**, i.e. the temperature corresponding to a water vapor saturation.
- Unlike temperature and precipitation, dew-point temperature is not corrected for elevation differences.

Wind

Interpolation of wind characteristics depends on the amount of information available:

- Interpolation of wind speed only
- Interpolation of wind vectors (speed and direction)

2. Spatial interpolation: Interpolation parameters

• The following table summarizes the most important interpolation parameters:

Parameter	Rname	Description
$R_{p,initial}$	initial_Rp	Initial value of the truncation radius
$lpha_{Tmin}$	alpha_MinTemperature	Gaussian shape parameter for minimum temperature
$lpha_{Tmax}$	alpha_MaxTemperature	Gaussian shape parameter for maximum temperature
$lpha_{Tdew}$	alpha_DewTemperature	Gaussian shape parameter for dew-point temperature
$lpha_{Pevent}$	alpha_PrecipitationEvent	Gaussian shape parameter for precipitation event
$lpha_{Pamount}$	alpha_PrecipitationAmount	Gaussian shape parameter for precipitation amount
$lpha_{wind}$	alpha_Wind	Gaussian shape parameter for wind
N_{Tmin}	N_MinTemperature	Average number of stations for minimum temperature
N_{Tmax}	N_MaxTemperature	Average number of stations for maximum temperature
N_{Tdew}	N_DewTemperature	Average number of stations for dew-point temperature
N_{Pevent}	N_PrecipitationEvent	Average number of stations for precipitation event
$N_{Pamount}$	N_PrecipitationAmount	Average number of stations for precipitation amount
N_{wind}	N_Wind	Average number of stations for wind

Solar radiation

- Potential solar radiation, R_{pot} , is the radiation that a surface on earth would receive if atmosphere was not present (i.e. without the effects of cloud reflection, scattering, ...).
- R_{pot} is estimated according to latitude and topography.

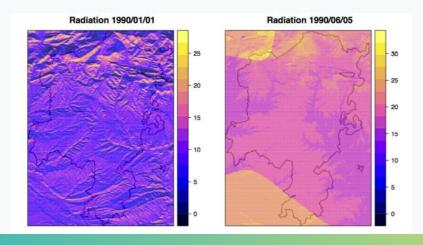
Solar radiation

- Potential solar radiation, R_{pot} , is the radiation that a surface on earth would receive if atmosphere was not present (i.e. without the effects of cloud reflection, scattering, ...).
- R_{pot} is estimated according to latitude and topography.
- Incident solar radiation, R_g , is the amount of (short-wave, direct) solar radiation reaching the surface after accounting for the atmosphere.

Solar radiation

- Potential solar radiation, R_{pot} , is the radiation that a surface on earth would receive if atmosphere was not present (i.e. without the effects of cloud reflection, scattering, ...).
- R_{pot} is estimated according to latitude and topography.
- Incident solar radiation, R_g , is the amount of (short-wave, direct) solar radiation reaching the surface after accounting for the atmosphere.
- Following Thornton, Running and White (1997), in **meteoland** is estimated R_g using:

$$R_g = R_{pot} \cdot T_{t,max} \cdot T_{f,max}$$


• Here, $T_{t,max}$ is the maximum (cloud-free) transmittance, which depends on temperature and relative humidity, and $T_{f,max}$ is the proportion of $T_{t,max}$ realized (cloud correction).

Solar radiation

- Potential solar radiation, R_{pot} , is the radiation that a surface on earth would receive if atmosphere was not present (i.e. without the effects of cloud reflection, scattering, ...).
- R_{pot} is estimated according to latitude and topography.
- Incident solar radiation, R_g , is the amount of (short-wave, direct) solar radiation reaching the surface after accounting for the atmosphere.
- Following Thornton, Running and White (1997), in **meteoland** is estimated R_g using:

$$R_g = R_{pot} \cdot T_{t,max} \cdot T_{f,max}$$

• Here, $T_{t,max}$ is the maximum (cloud-free) transmittance, which depends on temperature and relative humidity, and $T_{f,max}$ is the proportion of $T_{t,max}$ realized (cloud correction).

Potential evapotranspiration

- Potential evapotranspiration (E_{pot}) is estimated once all other variables have been processed.

Potential evapotranspiration

- Potential evapotranspiration (E_{pot}) is estimated once all other variables have been processed.
- If wind speed is available, the Penman (1948) equation is used, that combines an energy equation based on net incoming radiation with an aerodynamic approach, depends on wind.

Potential evapotranspiration

- Potential evapotranspiration (E_{pot}) is estimated once all other variables have been processed.
- If wind speed is available, the Penman (1948) equation is used, that combines an energy equation based on net incoming radiation with an aerodynamic approach, depends on wind.
- If wind speed is not available, an alternative formulation for E_{pot} is used as an approximation by Valiantzas (2006) based on solar radiation, mean temperature and relative humidity.

Introduction to meteoland

