
Introduction to climate data sources

Miquel De Cáceres, Victor Granda

Ecosystem Modelling Facility

2022-11-30

Outline

1. Preliminaries

a. What do I need?

b. Climate models

c. Climate data formats

Outline

1. Preliminaries

a. What do I need?

b. Climate models

c. Climate data formats

2. Historic climate

a. Point data sources

b. Gridded data sources

c. Interpolating by yourself

Outline

1. Preliminaries

a. What do I need?

b. Climate models

c. Climate data formats

2. Historic climate

a. Point data sources

b. Gridded data sources

c. Interpolating by yourself

3. Future climate

a. Climate scenarios and uncertainty

b. Downscaling projections

c. Projection data sources

1a. Preliminaries: What do I need?

What kind of climate information do I need?

- Weather What actually *happens* in the atmosphere
- **Climatology** Statistical distribution for a given period (typically 30 years): What you *expect* in the atmosphere
- Climate anomalies Comparison of what happened vs. what you expected

1a. Preliminaries: What do I need?

What kind of climate information do I need?

- Weather What actually *happens* in the atmosphere
- **Climatology** Statistical distribution for a given period (typically 30 years): What you *expect* in the atmosphere
- Climate anomalies Comparison of what happened vs. what you expected

What is the temporal extent and temporal resolution?

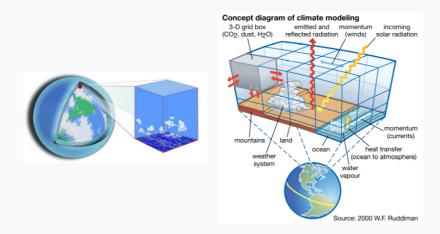
- Historical Before present
- Short-term forecast Few days/weeks in advance
- Mid-term predictions Seasonal to decadal predictions
- Climate projections Long-term predictions

1a. Preliminaries: What do I need?

What kind of climate information do I need?

- Weather What actually *happens* in the atmosphere
- **Climatology** Statistical distribution for a given period (typically 30 years): What you *expect* in the atmosphere
- Climate anomalies Comparison of what happened vs. what you expected

What is the temporal extent and temporal resolution?


- Historical Before present
- Short-term forecast Few days/weeks in advance
- Mid-term predictions Seasonal to decadal predictions
- Climate projections Long-term predictions

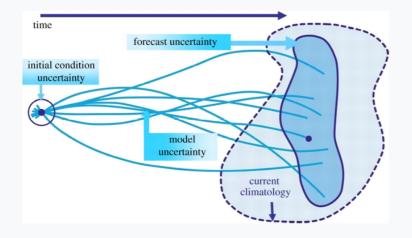
What is the spatial extent and resolution?

- Point locations E.g. forest plots or sampling locations
- Gridded Cells of a given resolution over a target area
- Area-wise means Area-average statistics

What are climate models?

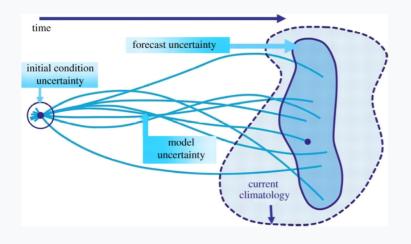
• General Circulation Models (GCMs) comprise atmosphere, ocean and sea ice components

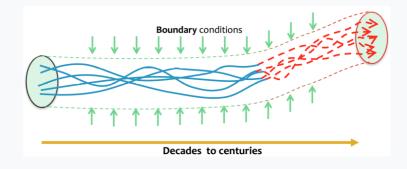
• They are a subset of **Earth System Models** (ESMs), which also include land use changes, carbon cycle, vegetation dynamics, ...


What are they used for?

- Paleoclimate reconstruction Past climatology according to conditions on earth
- Historical reanalysis Generate historical 3D weather fields to complete observations
- Short-term forecast Operational weather prediction few days/weeks in advance
- Mid-term predictions Seasonal to decadal climate predictions
- Climate projections Long-term predictions of future climatology

Initial conditions vs. boundary conditions

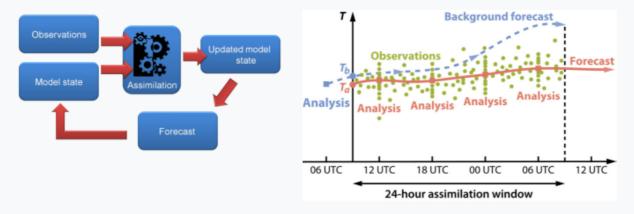

Effect of initial conditions



Initial conditions vs. boundary conditions

Effect of initial conditions


Effect of boundary conditions


Initial conditions vs. boundary conditions

Initial conditions are very relevant for **short-term** weather forecasts, whereas *boundary conditions* are very relevant for **long-term** climate simulation

Data assimilation

Both **weather forecast** and **historical reanalysis** products use **data assimilation** techniques to *constrain* climate model predictions with observations:

1c. Climate file formats

Formats specific for climate data

- **GRIB Gridded Binary** by World Meteorological Organization
- NetCDF Network Common Data Format by Unidata (UCAR/NCAR)
- HDF Hierarchical Data Format.

The netCDF user communities have numerous conventions for creating the contents of netCDF files, in particular, the commonly used CF conventions

1c. Climate file formats

Formats specific for climate data

- **GRIB Gridded Binary** by World Meteorological Organization
- NetCDF Network Common Data Format by Unidata (UCAR/NCAR)
- HDF Hierarchical Data Format.

The netCDF user communities have numerous conventions for creating the contents of netCDF files, in particular, the commonly used CF conventions

General-purpose GIS data formats

- GeoTIFF for raster data
- Geopackage
- ...

2a. Historic climate: Point data sources

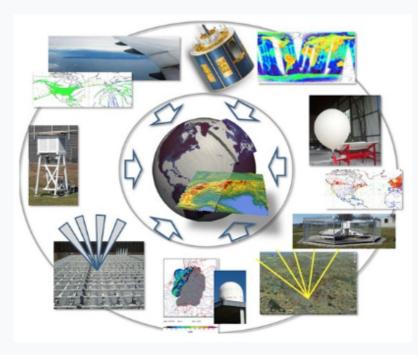
What should I know about point data sources?

- They are provided by national weather services (or non-professional networks)
- Quality control is important (sensors may fail or produce wrong data)
- Not all stations are made available
- User registration is sometimes needed

2a. Historic climate: Point data sources

What should I know about point data sources?

- They are provided by national weather services (or non-professional networks)
- Quality control is important (sensors may fail or produce wrong data)
- Not all stations are made available
- User registration is sometimes needed


R packages to access historic point data networks

Spatial extent	Network(s)	R package	Access
Global	NOAA Integrated Surface Database (ISD)	worldmet	CRAN
Canada	Environment and Climate Change Canada (ECCC)	weathercan	Ropensci
Spain	AEMET, SMC, MeteoGalicia, RIA, MeteoClimatic	meteospain	CRAN
Germany	German Weather Service	rdwd	CRAN
United States	NOAA National Climatic Data Center	rnoaa	CRAN

2b. Historic climate: Gridded data sources

How was the gridded data generated?

- **Statistical estimation** performs an estimation of weather at new locations from available point observations. Can be used to obtain fine-grained grids, but the real resolution is defined by reference weather data.
- **Reanalysis** involves dynamic climate models that simulate historic climate constrained by observations (more about this later). It is more physically consistent, but spatial resolution is often coarser.

2b. Historic climate: Gridded data sources

Gridded data sources

Source	Spatial extent	Spatial resolution	R package
WorldClim	Global	20 km	geodata
PaleoClim	Global	5 km	
DayMet	United States	1 km	daymetr
Copernicus Data Store	Europe		ecmwfr
Moreno & Hasenauer 2016	Europe	1 km	easyclimate
AEMET	Spain		

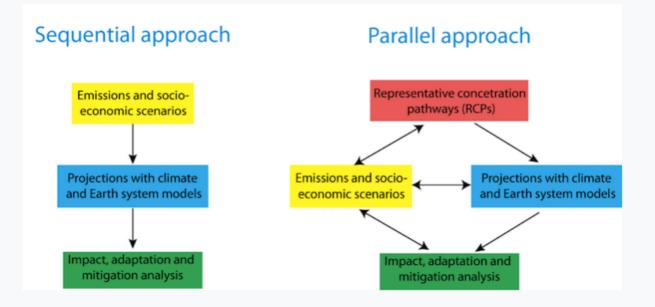
2c. Historic climate: Interpolation by yourself

What do I need to know about weather interpolation?

- 1. There are several interpolation methods (distance-based, krigging,...)
- 2. Interpolating climatological means is easier than interpolating actual weather
- 3. Interpolation quality depends on data quality and quantity (inhomogeneities)
- 4. Some variables (e.g. temperature) are easier than others (e.g. precipitation)

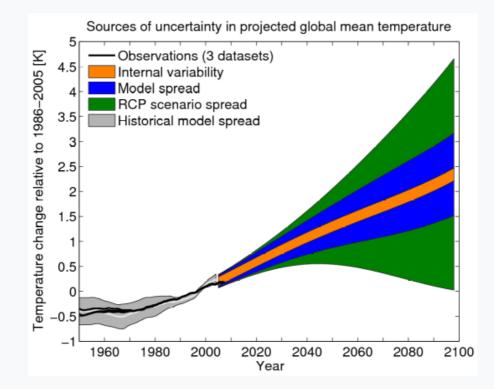
2c. Historic climate: Interpolation by yourself

What do I need to know about weather interpolation?


- 1. There are several interpolation methods (distance-based, krigging,...)
- 2. Interpolating climatological means is easier than interpolating actual weather
- 3. Interpolation quality depends on data quality and quantity (inhomogeneities)
- 4. Some variables (e.g. temperature) are easier than others (e.g. precipitation)

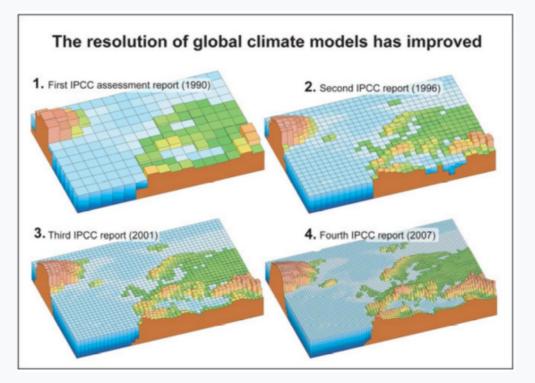
When do I need to resort on interpolation?

- Spatial resolution of available data is too coarse
- You want to account for local topographic effects on weather (depends on the method)
- Density of reference point data is enough


3a. Future climate: Scenarios and projection uncertainty

Climate scenarios (SRES – IPCC AR4 vs RCPs – IPCC AR5)

3a. Future climate: Scenarios and projection uncertainty

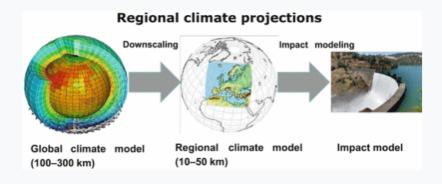

Sources of uncertainty in climate projections

These sources imply we should consider different climate models and different scenarios when assessing climate impacts.

3b. Future climate: Downscaling projections

Spatial resolution of climate models increases but is limited...

... and downscaling may still be needed

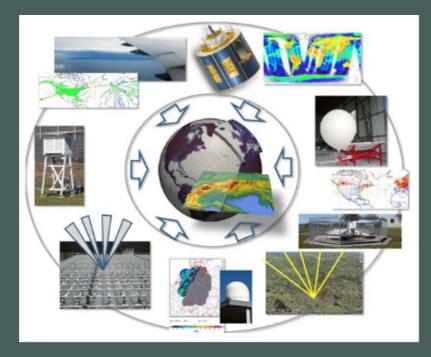

3b. Future climate: Downscaling projections

Dynamic downscaling

3b. Future climate: Downscaling projections

Dynamic downscaling

Statistical downscaling


- **Model output statistics** (bias correction) calibrate relationships between climate model outputs (predictors) and observations (predictands) in present climate and apply them to climate projections.
- **Perfect prognosis** calibrate relationships between large-scale predictors and local-scale predictands (both observations!) and apply them to climate projections. E.g. weather types or analogues.

3c. Future climate: Projection data sources

Projection data sources

Source	Spatial extent	СМІР	R package
WorldClim	Global	CMIP6	geodata
CHELSA	Global	CMIP5/CMIP6	
Copernicus Data Store	Europe	CMIP5	ecmwfr
AEMET	Spain	CMIP5	

Introduction to climate data sources

