
Outline
1. Forest and soil initialisation over large areas

2. Parameter estimation for multiple species

3. Tools for model analysis

4. Spatial variation of climate forcing: meteoland

5. Simulation over landscapes: medfateland

1. Forest and soil initialisation over large areas
Data sources
The following is a list of data sources that I commonly use for large-scale initialisation of forest and
soil objects:

Data source Information Spatial structure

DEM Topography Polygons/raster

Forest maps Forest composition (dominant species) Polygons

LiDAR data Vegetation height Raster

National forest inventories Composition and structure on point locations Points

SoilGrids Soil texture, bulk density, organic matter,... Raster

Shagguan et al. (2017) Soil depth Raster

1. Forest and soil initialisation over large areas
Data sources
The following is a list of data sources that I commonly use for large-scale initialisation of forest and
soil objects:

Data source Information Spatial structure

DEM Topography Polygons/raster

Forest maps Forest composition (dominant species) Polygons

LiDAR data Vegetation height Raster

National forest inventories Composition and structure on point locations Points

SoilGrids Soil texture, bulk density, organic matter,... Raster

Shagguan et al. (2017) Soil depth Raster

You can check on other data sources at EMF website.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

Problem: Most countries lack detailed soil maps but soil properties change substantially at small
scales.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

Problem: Most countries lack detailed soil maps but soil properties change substantially at small
scales.

Soils

Relying on SoilGrids implies accepting a high degree of uncertainty for some variables.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

Problem: Most countries lack detailed soil maps but soil properties change substantially at small
scales.

Soils

Relying on SoilGrids implies accepting a high degree of uncertainty for some variables.

Initialisation of soils requires at least combining SoilGrids with additional information on soil depth
and rock content.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

Problem: Most countries lack detailed soil maps but soil properties change substantially at small
scales.

Soils

Relying on SoilGrids implies accepting a high degree of uncertainty for some variables.

Initialisation of soils requires at least combining SoilGrids with additional information on soil depth
and rock content.

Surface rock content can serve as a proxy of belowground rock content, but with a high degree of
uncertainty!

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

General procedure

1. Decide taxonomic treatment according to:

Taxonomic resolution of forest data sources (e.g. forest inventory data)

Availability of trait data

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

General procedure

1. Decide taxonomic treatment according to:

Taxonomic resolution of forest data sources (e.g. forest inventory data)

Availability of trait data

2. Store original source codes to be lumped into the same taxon/group (e.g. genus level)

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

General procedure

1. Decide taxonomic treatment according to:

Taxonomic resolution of forest data sources (e.g. forest inventory data)

Availability of trait data

2. Store original source codes to be lumped into the same taxon/group (e.g. genus level)

3. Initialize medfate's species parameter table:

SpParams <- medfateutils::initSpParams()

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

General procedure

1. Decide taxonomic treatment according to:

Taxonomic resolution of forest data sources (e.g. forest inventory data)

Availability of trait data

2. Store original source codes to be lumped into the same taxon/group (e.g. genus level)

3. Initialize medfate's species parameter table:

SpParams <- medfateutils::initSpParams()

4. Fill species parameter table from multiple sources (different functions in medfateutils)

2. Parameter estimation for multiple species
Estimation from forest inventory data
Growth form (tree or shrub) depending on how the species is sampled in the forest source data:

Trees - Diameter, height,...
Shrub - Cover, mean height

2. Parameter estimation for multiple species
Estimation from forest inventory data
Growth form (tree or shrub) depending on how the species is sampled in the forest source data:

Trees - Diameter, height,...
Shrub - Cover, mean height

The following information can be extracted from forest inventory data:

Maximum height
Diameter to height ratio
Growth rates
Mortality rates
Allometric relationships

2. Parameter estimation for multiple species
Estimation from plant trait databases

Source Database name Parameters

Asse et al. (2020) Leaf phenology

Bartlett et al. (2012) Leaf pressure-volume curve, turgor loss point

Burriel et al. (2004) Tree allometries

Choat et al. (2012) Xylem vulnerability

De Cáceres et al. (2019) Shrub allometries

Delpierre et al. (2019) Leaf phenology

Duursma et al. (2018) Minimum stomatal conductance

Hoshika et al. (2018) Maximum stomatal conductance

Kattge et al. (2020) TRY Multiple traits

Martin-StPaul et al. (2017) Turgor loss point

Morris et al. (2016) Conduit sapwood fraction

Sanchez‐Martinez et al.
(2020)

HIDRATRY
SLA, wood density, Huber value, xylem efficiency, xylem
vulnerability

Tavşanoǧlu & Pausas (2006) BROT2 Life form, leaf duration, SLA, wood density

Vitasse et al. (2011) Leaf phenology

Yebra et al. (2019) Globe-LFMC Fuel moisture content

Zanne et al. (2009) Global Wood Density
Database

Wood density

3. Tools for model analysis
Multiple runs
Model analysis (i.e. calibration, sensitivity analysis, uncertainty analysis, ...) involve running a large
number simulations with different parameter sets.

3. Tools for model analysis
Multiple runs
Model analysis (i.e. calibration, sensitivity analysis, uncertainty analysis, ...) involve running a large
number simulations with different parameter sets.

If we build a matrix parMatrix of parameter combinations in rows, we can use function
multiple_runs() to evaluate them, e.g.:

multiple_runs(parMatrix, x1, examplemeteo, latitude = 42, elevation = 100,

 summary_function = sf)

where x1 is the initial model input object and sf is a summary function.

3. Tools for model analysis
Multiple runs
Model analysis (i.e. calibration, sensitivity analysis, uncertainty analysis, ...) involve running a large
number simulations with different parameter sets.

If we build a matrix parMatrix of parameter combinations in rows, we can use function
multiple_runs() to evaluate them, e.g.:

multiple_runs(parMatrix, x1, examplemeteo, latitude = 42, elevation = 100,

 summary_function = sf)

where x1 is the initial model input object and sf is a summary function.

For each parameter combination, multiple_runs() will:

1. Modify the values of the target parameter in x1
2. Call the simulation function: spwb() or growth()
3. Call the summary function to extract the desired output.

3. Tools for model analysis
Function factories
Sensitivity analyses and calibration procedures often require defining a function that accepts values of
the parameters to be calibrated and return model outputs or evaluation metrics, e.g.

where is the set of parameter values and is a scalar corresponding model prediction
(e.g. annual transpiration) or an evaluation metric (e.g. mean absolute error of basal area
increment).

y = g(x1, x2, . . . , xr)

x1, x2, . . . , xr y

3. Tools for model analysis
Function factories
Sensitivity analyses and calibration procedures often require defining a function that accepts values of
the parameters to be calibrated and return model outputs or evaluation metrics, e.g.

where is the set of parameter values and is a scalar corresponding model prediction
(e.g. annual transpiration) or an evaluation metric (e.g. mean absolute error of basal area
increment).

Package medfate includes function factories, i.e. functions that return functions to be used in those
calculations.

Function factory Multiple
cohorts Function returns

optimization_function() No The scalar of a simulation
summary

optimization_evaluation_function() No The scalar of a simulation
evaluation

optimization_multicohort_function() Yes The scalar of a simulation
summary

optimization_evaluation_multicohort_function() Yes The scalar of a simulation
summary

y = g(x1, x2, . . . , xr)

x1, x2, . . . , xr y

3. Tools for model analysis
Function factories
An example of using the function factory is:

of_transp<-optimization_function(parNames = parNames,

 x = x1,

 meteo = examplemeteo,

 latitude = 42, elevation = 100,

 summary_function = sf)

where parNames specifies the target parameters.

3. Tools for model analysis
Function factories
An example of using the function factory is:

of_transp<-optimization_function(parNames = parNames,

 x = x1,

 meteo = examplemeteo,

 latitude = 42, elevation = 100,

 summary_function = sf)

where parNames specifies the target parameters.

The object of_transp is now our function , and we can call it with any
parameter combination.

y = g(x1, x2, . . . , xr)

3. Tools for model analysis
Function factories
An example of using the function factory is:

of_transp<-optimization_function(parNames = parNames,

 x = x1,

 meteo = examplemeteo,

 latitude = 42, elevation = 100,

 summary_function = sf)

where parNames specifies the target parameters.

The object of_transp is now our function , and we can call it with any
parameter combination.

There is a package vignette illustrating the use of the function factories in different contexts.

Analysis R package(s)

Global sensitivity analysis sensitivity

Point calibration ga (genetic algorithms), stats (gradient search)

Bayesian calibration BayesianTools

y = g(x1, x2, . . . , xr)

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

2. Statistical correction of meteorological data series (e.g. from climate models).

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

2. Statistical correction of meteorological data series (e.g. from climate models).

3. Multisite and multivariate stochastic weather generation (underdeveloped).

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

2. Statistical correction of meteorological data series (e.g. from climate models).

3. Multisite and multivariate stochastic weather generation (underdeveloped).

Installation
From CRAN (stable versions; now ver. 1.0.2):

install.packages("meteoland")

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

2. Statistical correction of meteorological data series (e.g. from climate models).

3. Multisite and multivariate stochastic weather generation (underdeveloped).

Installation
From CRAN (stable versions; now ver. 1.0.2):

install.packages("meteoland")

From GitHub (now ver. 1.0.3):

remotes::install_github("emf-creaf/meteoland")

4. Spatial variation of climate forcing: meteoland
Spatial topography classes
Three classes are defined to represent the variation of topographic features (i.e., elevation, slope and
aspect) over space, extending S4 classes of package sp:

Class SpatialPointsTopography extends SpatialPointsDataFrame and represents the
topographic features of a set of points in a landscape.
Class SpatialGridTopography extends SpatialGridDataFrame and represents the
continuous variation of topographic features over a full spatial grid.
Class SpatialPixelsTopography extends SpatialPixelsDataFrame and represents the
continuous variation of topographic features over a set if cells in a grid.

Data frames in topography classes have only
three attributes:

elevation in meters a.s.l.
slope in degrees from the horizontal
plane.
aspect in degrees from North.

4. Spatial variation of climate forcing: meteoland
Spatial topography classes
Three classes are defined to represent the variation of topographic features (i.e., elevation, slope and
aspect) over space, extending S4 classes of package sp:

Class SpatialPointsTopography extends SpatialPointsDataFrame and represents the
topographic features of a set of points in a landscape.
Class SpatialGridTopography extends SpatialGridDataFrame and represents the
continuous variation of topographic features over a full spatial grid.
Class SpatialPixelsTopography extends SpatialPixelsDataFrame and represents the
continuous variation of topographic features over a set if cells in a grid.

4. Spatial variation of climate forcing: meteoland
Spatial meteorology classes
Analogously to topography classes, three spatial classes are used to represent the variation of daily
meteorology over space, also extending classes in sp:

Class SpatialPointsMeteorology extends SpatialPoints and represents daily
meteorology series for a set of points in a landscape.
Class SpatialGridMeteorology extends SpatialGrid and represents the continuous
variation of daily meteorology across a grid of cells.
Class SpatialPixelsMeteorology extends SpatialPixels and represents the variation of
daily meteorology for a set of pixels (cells) of a spatial grid.

Spatial meteorology classes have two important
slots:

dates - a vector of days specifying a time
period.
data - a vector of data frames with the
meteorological data.

One data frame for each point in
SpatialPointsMeteorology.
One data frame for each day in
SpatialGridMeteorology and
SpatialPixelsMeteorology.

4. Spatial variation of climate forcing: meteoland
Spatial meteorology classes
Analogously to topography classes, three spatial classes are used to represent the variation of daily
meteorology over space, also extending classes in sp:

Class SpatialPointsMeteorology extends SpatialPoints and represents daily
meteorology series for a set of points in a landscape.
Class SpatialGridMeteorology extends SpatialGrid and represents the continuous
variation of daily meteorology across a grid of cells.
Class SpatialPixelsMeteorology extends SpatialPixels and represents the variation of
daily meteorology for a set of pixels (cells) of a spatial grid.

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

Minimum temperature, maximum temperature and precipitation are interpolated from a set of
point weather records using truncated Gaussian filters, while accounting for the relationship
between these variables and elevation (Thornton et al. 1997).

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

Minimum temperature, maximum temperature and precipitation are interpolated from a set of
point weather records using truncated Gaussian filters, while accounting for the relationship
between these variables and elevation (Thornton et al. 1997).

Relative humidity can be either interpolated (in fact, dew-point temperature is the variable
being interpolated) or predicted from temperature estimates, depending on whether it was
measured in in the set of reference points (surface stations).

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

Minimum temperature, maximum temperature and precipitation are interpolated from a set of
point weather records using truncated Gaussian filters, while accounting for the relationship
between these variables and elevation (Thornton et al. 1997).

Relative humidity can be either interpolated (in fact, dew-point temperature is the variable
being interpolated) or predicted from temperature estimates, depending on whether it was
measured in in the set of reference points (surface stations).

Potential solar radiation is estimated taking into account latitude, seasonality, aspect and slope.
Actual solar irradiance is then estimated from potential radiation by including the effect of
atmosphere transmittance using the predictions of temperature range, relative humidity and
precipitation (Thornton & Running 1999).

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

Minimum temperature, maximum temperature and precipitation are interpolated from a set of
point weather records using truncated Gaussian filters, while accounting for the relationship
between these variables and elevation (Thornton et al. 1997).

Relative humidity can be either interpolated (in fact, dew-point temperature is the variable
being interpolated) or predicted from temperature estimates, depending on whether it was
measured in in the set of reference points (surface stations).

Potential solar radiation is estimated taking into account latitude, seasonality, aspect and slope.
Actual solar irradiance is then estimated from potential radiation by including the effect of
atmosphere transmittance using the predictions of temperature range, relative humidity and
precipitation (Thornton & Running 1999).

The wind vector (wind direction and wind speed) is interpolated by using weather station
records and static wind fields.

4. Spatial variation of climate forcing: meteoland
Weather interpolation
MeteorologyInterpolationData

Package meteoland stores weather series for reference locations (surface weather stations) and
interpolation parameters in a single object of class MeteorologyInterpolationData.

4. Spatial variation of climate forcing: meteoland
Weather interpolation
MeteorologyInterpolationData

Package meteoland stores weather series for reference locations (surface weather stations) and
interpolation parameters in a single object of class MeteorologyInterpolationData.

Warning: Collecting and assembling surface weather records into an object of
MeteorologyInterpolationData is the tedious part of using package meteoland.

4. Spatial variation of climate forcing: meteoland
Weather interpolation
MeteorologyInterpolationData

Package meteoland stores weather series for reference locations (surface weather stations) and
interpolation parameters in a single object of class MeteorologyInterpolationData.

Warning: Collecting and assembling surface weather records into an object of
MeteorologyInterpolationData is the tedious part of using package meteoland.

Interpolation functions

Interpolation is conducted using different R functions depending on the spatial input:

Spatial input Interpolation function Spatial output

SpatialPointsTopography interpolationpoints() SpatialPointsMeteorology

SpatialGridTopography interpolationgrid() SpatialGridMeteorology

SpatialPixelsTopography interpolationpixels() SpatialPixelsMeteorology

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
Concept

The general idea of correction is that a fine-scale weather series is compared to a coarse-scale series
for a reference (historical) period. The result of this comparison can be used to correct coarse-scale
weather series for a target (e.g. future) period.

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
Concept

The general idea of correction is that a fine-scale weather series is compared to a coarse-scale series
for a reference (historical) period. The result of this comparison can be used to correct coarse-scale
weather series for a target (e.g. future) period.

Correction methods

Let be the value of the variable of the more accurate (e.g. local) series for a given day and the
corresponding value for the less accurate series (e.g., climate model output).

Users can choose between three different types of corrections:

1. Unbiasing: consists in subtracting, from the series to be corrected, the average difference
between the two series for the reference period: .

xi i ui

θ = ∑
n

i
(ui − xi)/n

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
Concept

The general idea of correction is that a fine-scale weather series is compared to a coarse-scale series
for a reference (historical) period. The result of this comparison can be used to correct coarse-scale
weather series for a target (e.g. future) period.

Correction methods

Let be the value of the variable of the more accurate (e.g. local) series for a given day and the
corresponding value for the less accurate series (e.g., climate model output).

Users can choose between three different types of corrections:

1. Unbiasing: consists in subtracting, from the series to be corrected, the average difference
between the two series for the reference period: .

2. Scaling: A slope is calculated by regressing on through the origin using data of the reference
period. The slope can then be used as scaling factor to multiply the values of for any day of the
period of interest.

xi i ui

θ = ∑
n

i
(ui − xi)/n

u x
u

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
Concept

The general idea of correction is that a fine-scale weather series is compared to a coarse-scale series
for a reference (historical) period. The result of this comparison can be used to correct coarse-scale
weather series for a target (e.g. future) period.

Correction methods

Let be the value of the variable of the more accurate (e.g. local) series for a given day and the
corresponding value for the less accurate series (e.g., climate model output).

Users can choose between three different types of corrections:

1. Unbiasing: consists in subtracting, from the series to be corrected, the average difference
between the two series for the reference period: .

2. Scaling: A slope is calculated by regressing on through the origin using data of the reference
period. The slope can then be used as scaling factor to multiply the values of for any day of the
period of interest.

3. Empirical quantile mapping: Consists in comparing the empirical cumulative distribution
function (CDF) of the two series for the reference period, and this mapping is used to correct
values of for the target period.

xi i ui

θ = ∑
n

i
(ui − xi)/n

u x
u

u

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
MeteorologyUncorrectedData

Statistical correction needs an object of class MeteorologyUncorrectedData, containing the
coarse-scale data to be corrected (for both the reference and target periods) and the correction
method to be used for each variable. e.g.

u <- MeteorologyUncorrectedData(sp, u_reference, u_target, ...)

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
MeteorologyUncorrectedData

Statistical correction needs an object of class MeteorologyUncorrectedData, containing the
coarse-scale data to be corrected (for both the reference and target periods) and the correction
method to be used for each variable. e.g.

u <- MeteorologyUncorrectedData(sp, u_reference, u_target, ...)

Correction function

Correction is performed using function correctionpoints(), which takes as input the object of
class MeteorologyUncorrectedData and an object of class SpatialPointsMeteorology with the
fine-scale data for the reference period.

y <- correctionpoints(u, x)

The function will take all points in x as spatial target locations to perform the correction (and
implicitly downscaling) of the coarse-scale data in u.

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

The package allows executing the models available in package medfate on points and cells within
landscape, in either sequentially or using parallel computation.

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

The package allows executing the models available in package medfate on points and cells within
landscape, in either sequentially or using parallel computation.

In addition, medfateland implements spatial hydrological processes for simulations in forested
watersheds.

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

The package allows executing the models available in package medfate on points and cells within
landscape, in either sequentially or using parallel computation.

In addition, medfateland implements spatial hydrological processes for simulations in forested
watersheds.

Installation and documentation
The package is available at GitHub only:

remotes::install_github("emf-creaf/medfateland")

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

The package allows executing the models available in package medfate on points and cells within
landscape, in either sequentially or using parallel computation.

In addition, medfateland implements spatial hydrological processes for simulations in forested
watersheds.

Installation and documentation
The package is available at GitHub only:

remotes::install_github("emf-creaf/medfateland")

Information about the design of medfateland can be found in its website and in medfate’s reference
book.

5. Simulation over landscapes: medfateland
Data structures
Package medfateland offers three spatial classes that inherit fields from three corresponding classes
in package meteoland:

SpatialPointsLandscape: represents a set of forest stands (including soil description) as
points within a landscape. Extends class SpatialPointsTopography.
SpatialPixelsLandscape: represents a set of forests (including soil description) or other land
cover units (i.e. agricultural, rock outcrops or urban areas) as pixels within a gridded landscape.
Extends class SpatialPixelsTopography.
SpatialGridLandscape: represents a set of forests (including soil description) or other land
cover units (i.e. agricultural, rock outcrops or urban areas) as pixels within a complete grid.
Extends class SpatialGridTopography.

5. Simulation over landscapes: medfateland
Data structures
Package medfateland offers three spatial classes that inherit fields from three corresponding classes
in package meteoland:

SpatialPointsLandscape: represents a set of forest stands (including soil description) as
points within a landscape. Extends class SpatialPointsTopography.
SpatialPixelsLandscape: represents a set of forests (including soil description) or other land
cover units (i.e. agricultural, rock outcrops or urban areas) as pixels within a gridded landscape.
Extends class SpatialPixelsTopography.
SpatialGridLandscape: represents a set of forests (including soil description) or other land
cover units (i.e. agricultural, rock outcrops or urban areas) as pixels within a complete grid.
Extends class SpatialGridTopography.

An additional spatial class is defined for watershed ecohydrological modelling:

DistributedWatershed: Represents a (forested) watershed, including land cover units (i.e.
agricultural, rock outcrops or urban areas), forest and soil information as well as bedrock
properties. Extends class SpatialPixelsLandscape.

5. Simulation over landscapes: medfateland
Data structures
There are example spatial landscape objects in the package, e.g. a SpatialPointsLandscape:

data("examplepointslandscape")

5. Simulation over landscapes: medfateland
Data structures
There are example spatial landscape objects in the package, e.g. a SpatialPointsLandscape:

data("examplepointslandscape")

Using plot() functions for spatial landscape objects, we can draw maps of some variables using:

plot(examplepointslandscape, "basalArea")

5. Simulation over landscapes: medfateland
Data structures
Another example concerns a DistributedWatershed:

data("examplewatershed")

plot(examplewatershed, "basalArea")

5. Simulation over landscapes: medfateland
Data structures
Another example concerns a DistributedWatershed:

data("examplewatershed")

plot(examplewatershed, "basalArea")

The set of maps available can be known by inspecting the help of function getLandscapeLayer().

5. Simulation over landscapes: medfateland
Data structures
Another example concerns a DistributedWatershed:

data("examplewatershed")

plot(examplewatershed, "basalArea")

The set of maps available can be known by inspecting the help of function getLandscapeLayer().

Alternatively, the package provides function shinyplotland() to display maps interactively.

5. Simulation over landscapes: medfateland
Dynamic simulation functions
A large number of simulation functions are included in package medfateland:

Spatial structure Water balance (1 day) Water balance (n days) Forest growth Forest dynamics

SpatialPointsLandscape spwbpoints_day() spwbpoints() growthpoints() fordynpoints()

SpatialPixelsLandscape spwbpixels_day() spwbpixels() growthpixels() fordynpixels()

SpatialGridLandscape spwbgrid_day() spwbgrid() growthgrid() fordyngrid()

DistributedWatershed spwbland() growthland()

5. Simulation over landscapes: medfateland
Dynamic simulation functions
A large number of simulation functions are included in package medfateland:

Spatial structure Water balance (1 day) Water balance (n days) Forest growth Forest dynamics

SpatialPointsLandscape spwbpoints_day() spwbpoints() growthpoints() fordynpoints()

SpatialPixelsLandscape spwbpixels_day() spwbpixels() growthpixels() fordynpixels()

SpatialGridLandscape spwbgrid_day() spwbgrid() growthgrid() fordyngrid()

DistributedWatershed spwbland() growthland()

Most of these functions make internal calls to spwb(), growth() or fordyn() on points or grid cells
of the spatial classes.

5. Simulation over landscapes: medfateland
Dynamic simulation functions
A large number of simulation functions are included in package medfateland:

Spatial structure Water balance (1 day) Water balance (n days) Forest growth Forest dynamics

SpatialPointsLandscape spwbpoints_day() spwbpoints() growthpoints() fordynpoints()

SpatialPixelsLandscape spwbpixels_day() spwbpixels() growthpixels() fordynpixels()

SpatialGridLandscape spwbgrid_day() spwbgrid() growthgrid() fordyngrid()

DistributedWatershed spwbland() growthland()

Most of these functions make internal calls to spwb(), growth() or fordyn() on points or grid cells
of the spatial classes.

Important: Since most functions do not account for spatial processes, there are parameters to allow
the user to specify parallel computation.

5. Simulation over landscapes: medfateland
Climate forcing in large-scale simulations
Simulation functions of medfateland accept objects of class MeteorologyInterpolationData as
input, which allows performing interpolation at the time of performing simulations.

5. Simulation over landscapes: medfateland
Climate forcing in large-scale simulations
Simulation functions of medfateland accept objects of class MeteorologyInterpolationData as
input, which allows performing interpolation at the time of performing simulations.

The following workflow can be envisaged for large-scale simulations with medfateland:

M.C. Escher - Belvedere, 1958

4.1 - Landscape- and regional-scale
simulations (practice)
Miquel De Cáceres, Victor Granda, Aitor Ameztegui

Ecosystem Modelling Facility

2022-06-16

https://emf.creaf.cat/external_data/
https://emf-creaf.github.io/medfate/articles/modelanalysis/SensitivityCalibration.html
https://daymet.ornl.gov/
https://daymet.ornl.gov/
https://daymet.ornl.gov/
https://daymet.ornl.gov/
https://daymet.ornl.gov/
https://emf-creaf.github.io/medfateland/
https://emf-creaf.github.io/medfatebook/index.html

Outline
1. Forest and soil initialisation over large areas

2. Parameter estimation for multiple species

3. Tools for model analysis

4. Spatial variation of climate forcing: meteoland

5. Simulation over landscapes: medfateland

1. Forest and soil initialisation over large areas
Data sources
The following is a list of data sources that I commonly use for large-scale initialisation of forest and
soil objects:

Data source Information Spatial structure

DEM Topography Polygons/raster

Forest maps Forest composition (dominant species) Polygons

LiDAR data Vegetation height Raster

National forest inventories Composition and structure on point locations Points

SoilGrids Soil texture, bulk density, organic matter,... Raster

Shagguan et al. (2017) Soil depth Raster

1. Forest and soil initialisation over large areas
Data sources
The following is a list of data sources that I commonly use for large-scale initialisation of forest and
soil objects:

Data source Information Spatial structure

DEM Topography Polygons/raster

Forest maps Forest composition (dominant species) Polygons

LiDAR data Vegetation height Raster

National forest inventories Composition and structure on point locations Points

SoilGrids Soil texture, bulk density, organic matter,... Raster

Shagguan et al. (2017) Soil depth Raster

You can check on other data sources at EMF website.

https://emf.creaf.cat/external_data/

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

Problem: Most countries lack detailed soil maps but soil properties change substantially at small
scales.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

Problem: Most countries lack detailed soil maps but soil properties change substantially at small
scales.

Soils

Relying on SoilGrids implies accepting a high degree of uncertainty for some variables.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

Problem: Most countries lack detailed soil maps but soil properties change substantially at small
scales.

Soils

Relying on SoilGrids implies accepting a high degree of uncertainty for some variables.

Initialisation of soils requires at least combining SoilGrids with additional information on soil depth
and rock content.

1. Forest and soil initialisation over large areas
Initialisation tips
Forest structure and composition

Initialisation of forest objects over a grid requires defining imputation procedures and using
multiple data sources:

Forest inventory data
Forest maps
Lidar data.

Problem: Most countries lack detailed soil maps but soil properties change substantially at small
scales.

Soils

Relying on SoilGrids implies accepting a high degree of uncertainty for some variables.

Initialisation of soils requires at least combining SoilGrids with additional information on soil depth
and rock content.

Surface rock content can serve as a proxy of belowground rock content, but with a high degree of
uncertainty!

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

General procedure

1. Decide taxonomic treatment according to:

Taxonomic resolution of forest data sources (e.g. forest inventory data)

Availability of trait data

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

General procedure

1. Decide taxonomic treatment according to:

Taxonomic resolution of forest data sources (e.g. forest inventory data)

Availability of trait data

2. Store original source codes to be lumped into the same taxon/group (e.g. genus level)

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

General procedure

1. Decide taxonomic treatment according to:

Taxonomic resolution of forest data sources (e.g. forest inventory data)

Availability of trait data

2. Store original source codes to be lumped into the same taxon/group (e.g. genus level)

3. Initialize medfate's species parameter table:

SpParams <- medfateutils::initSpParams()

2. Parameter estimation for multiple species
Creating species parameter tables
Estimating species parameters is the hardest task and most important limitation to the use of process-
based models, so you are not expected to do this by yourself!

General procedure

1. Decide taxonomic treatment according to:

Taxonomic resolution of forest data sources (e.g. forest inventory data)

Availability of trait data

2. Store original source codes to be lumped into the same taxon/group (e.g. genus level)

3. Initialize medfate's species parameter table:

SpParams <- medfateutils::initSpParams()

4. Fill species parameter table from multiple sources (different functions in medfateutils)

2. Parameter estimation for multiple species
Estimation from forest inventory data
Growth form (tree or shrub) depending on how the species is sampled in the forest source data:

Trees - Diameter, height,...
Shrub - Cover, mean height

2. Parameter estimation for multiple species
Estimation from forest inventory data
Growth form (tree or shrub) depending on how the species is sampled in the forest source data:

Trees - Diameter, height,...
Shrub - Cover, mean height

The following information can be extracted from forest inventory data:

Maximum height
Diameter to height ratio
Growth rates
Mortality rates
Allometric relationships

2. Parameter estimation for multiple species
Estimation from plant trait databases

Source Database name Parameters

Asse et al. (2020) Leaf phenology

Bartlett et al. (2012) Leaf pressure-volume curve, turgor loss point

Burriel et al. (2004) Tree allometries

Choat et al. (2012) Xylem vulnerability

De Cáceres et al. (2019) Shrub allometries

Delpierre et al. (2019) Leaf phenology

Duursma et al. (2018) Minimum stomatal conductance

Hoshika et al. (2018) Maximum stomatal conductance

Kattge et al. (2020) TRY Multiple traits

Martin-StPaul et al. (2017) Turgor loss point

Morris et al. (2016) Conduit sapwood fraction

Sanchez‐Martinez et al.
(2020)

HIDRATRY
SLA, wood density, Huber value, xylem efficiency, xylem
vulnerability

Tavşanoǧlu & Pausas (2006) BROT2 Life form, leaf duration, SLA, wood density

Vitasse et al. (2011) Leaf phenology

Yebra et al. (2019) Globe-LFMC Fuel moisture content

Zanne et al. (2009) Global Wood Density
Database

Wood density

3. Tools for model analysis
Multiple runs
Model analysis (i.e. calibration, sensitivity analysis, uncertainty analysis, ...) involve running a large
number simulations with different parameter sets.

3. Tools for model analysis
Multiple runs
Model analysis (i.e. calibration, sensitivity analysis, uncertainty analysis, ...) involve running a large
number simulations with different parameter sets.

If we build a matrix parMatrix of parameter combinations in rows, we can use function
multiple_runs() to evaluate them, e.g.:

multiple_runs(parMatrix, x1, examplemeteo, latitude = 42, elevation = 100,

 summary_function = sf)

where x1 is the initial model input object and sf is a summary function.

3. Tools for model analysis
Multiple runs
Model analysis (i.e. calibration, sensitivity analysis, uncertainty analysis, ...) involve running a large
number simulations with different parameter sets.

If we build a matrix parMatrix of parameter combinations in rows, we can use function
multiple_runs() to evaluate them, e.g.:

multiple_runs(parMatrix, x1, examplemeteo, latitude = 42, elevation = 100,

 summary_function = sf)

where x1 is the initial model input object and sf is a summary function.

For each parameter combination, multiple_runs() will:

1. Modify the values of the target parameter in x1
2. Call the simulation function: spwb() or growth()
3. Call the summary function to extract the desired output.

3. Tools for model analysis
Function factories
Sensitivity analyses and calibration procedures often require defining a function that accepts values of
the parameters to be calibrated and return model outputs or evaluation metrics, e.g.

where is the set of parameter values and is a scalar corresponding model prediction
(e.g. annual transpiration) or an evaluation metric (e.g. mean absolute error of basal area
increment).

y = g(x1,x2, . . . ,xr)

x1,x2, . . . ,xr y

3. Tools for model analysis
Function factories
Sensitivity analyses and calibration procedures often require defining a function that accepts values of
the parameters to be calibrated and return model outputs or evaluation metrics, e.g.

where is the set of parameter values and is a scalar corresponding model prediction
(e.g. annual transpiration) or an evaluation metric (e.g. mean absolute error of basal area
increment).

Package medfate includes function factories, i.e. functions that return functions to be used in those
calculations.

Function factory Multiple
cohorts Function returns

optimization_function() No The scalar of a simulation
summary

optimization_evaluation_function() No The scalar of a simulation
evaluation

optimization_multicohort_function() Yes The scalar of a simulation
summary

optimization_evaluation_multicohort_function() Yes The scalar of a simulation
summary

y = g(x1,x2, . . . ,xr)

x1,x2, . . . ,xr y

3. Tools for model analysis
Function factories
An example of using the function factory is:

of_transp<-optimization_function(parNames = parNames,

 x = x1,

 meteo = examplemeteo,

 latitude = 42, elevation = 100,

 summary_function = sf)

where parNames specifies the target parameters.

3. Tools for model analysis
Function factories
An example of using the function factory is:

of_transp<-optimization_function(parNames = parNames,

 x = x1,

 meteo = examplemeteo,

 latitude = 42, elevation = 100,

 summary_function = sf)

where parNames specifies the target parameters.

The object of_transp is now our function , and we can call it with any
parameter combination.

y = g(x1,x2, . . . ,xr)

3. Tools for model analysis
Function factories
An example of using the function factory is:

of_transp<-optimization_function(parNames = parNames,

 x = x1,

 meteo = examplemeteo,

 latitude = 42, elevation = 100,

 summary_function = sf)

where parNames specifies the target parameters.

The object of_transp is now our function , and we can call it with any
parameter combination.

There is a package vignette illustrating the use of the function factories in different contexts.

Analysis R package(s)

Global sensitivity analysis sensitivity

Point calibration ga (genetic algorithms), stats (gradient search)

Bayesian calibration BayesianTools

y = g(x1,x2, . . . ,xr)

https://emf-creaf.github.io/medfate/articles/modelanalysis/SensitivityCalibration.html

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

2. Statistical correction of meteorological data series (e.g. from climate models).

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

2. Statistical correction of meteorological data series (e.g. from climate models).

3. Multisite and multivariate stochastic weather generation (underdeveloped).

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

2. Statistical correction of meteorological data series (e.g. from climate models).

3. Multisite and multivariate stochastic weather generation (underdeveloped).

Installation
From CRAN (stable versions; now ver. 1.0.2):

install.packages("meteoland")

4. Spatial variation of climate forcing: meteoland
Purpose
With the aim to assist research of climatic impacts on forests, package meteoland provides utilities to
estimate daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological stations.

2. Statistical correction of meteorological data series (e.g. from climate models).

3. Multisite and multivariate stochastic weather generation (underdeveloped).

Installation
From CRAN (stable versions; now ver. 1.0.2):

install.packages("meteoland")

From GitHub (now ver. 1.0.3):

remotes::install_github("emf-creaf/meteoland")

4. Spatial variation of climate forcing: meteoland
Spatial topography classes
Three classes are defined to represent the variation of topographic features (i.e., elevation, slope and
aspect) over space, extending S4 classes of package sp:

Class SpatialPointsTopography extends SpatialPointsDataFrame and represents the
topographic features of a set of points in a landscape.
Class SpatialGridTopography extends SpatialGridDataFrame and represents the
continuous variation of topographic features over a full spatial grid.
Class SpatialPixelsTopography extends SpatialPixelsDataFrame and represents the
continuous variation of topographic features over a set if cells in a grid.

Data frames in topography classes have only
three attributes:

elevation in meters a.s.l.
slope in degrees from the horizontal
plane.
aspect in degrees from North.

4. Spatial variation of climate forcing: meteoland
Spatial topography classes
Three classes are defined to represent the variation of topographic features (i.e., elevation, slope and
aspect) over space, extending S4 classes of package sp:

Class SpatialPointsTopography extends SpatialPointsDataFrame and represents the
topographic features of a set of points in a landscape.
Class SpatialGridTopography extends SpatialGridDataFrame and represents the
continuous variation of topographic features over a full spatial grid.
Class SpatialPixelsTopography extends SpatialPixelsDataFrame and represents the
continuous variation of topographic features over a set if cells in a grid.

4. Spatial variation of climate forcing: meteoland
Spatial meteorology classes
Analogously to topography classes, three spatial classes are used to represent the variation of daily
meteorology over space, also extending classes in sp:

Class SpatialPointsMeteorology extends SpatialPoints and represents daily
meteorology series for a set of points in a landscape.
Class SpatialGridMeteorology extends SpatialGrid and represents the continuous
variation of daily meteorology across a grid of cells.
Class SpatialPixelsMeteorology extends SpatialPixels and represents the variation of
daily meteorology for a set of pixels (cells) of a spatial grid.

Spatial meteorology classes have two important
slots:

dates - a vector of days specifying a time
period.
data - a vector of data frames with the
meteorological data.

One data frame for each point in
SpatialPointsMeteorology.
One data frame for each day in
SpatialGridMeteorology and
SpatialPixelsMeteorology.

4. Spatial variation of climate forcing: meteoland
Spatial meteorology classes
Analogously to topography classes, three spatial classes are used to represent the variation of daily
meteorology over space, also extending classes in sp:

Class SpatialPointsMeteorology extends SpatialPoints and represents daily
meteorology series for a set of points in a landscape.
Class SpatialGridMeteorology extends SpatialGrid and represents the continuous
variation of daily meteorology across a grid of cells.
Class SpatialPixelsMeteorology extends SpatialPixels and represents the variation of
daily meteorology for a set of pixels (cells) of a spatial grid.

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

https://daymet.ornl.gov/

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

Minimum temperature, maximum temperature and precipitation are interpolated from a set of
point weather records using truncated Gaussian filters, while accounting for the relationship
between these variables and elevation (Thornton et al. 1997).

https://daymet.ornl.gov/

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

Minimum temperature, maximum temperature and precipitation are interpolated from a set of
point weather records using truncated Gaussian filters, while accounting for the relationship
between these variables and elevation (Thornton et al. 1997).

Relative humidity can be either interpolated (in fact, dew-point temperature is the variable
being interpolated) or predicted from temperature estimates, depending on whether it was
measured in in the set of reference points (surface stations).

https://daymet.ornl.gov/

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

Minimum temperature, maximum temperature and precipitation are interpolated from a set of
point weather records using truncated Gaussian filters, while accounting for the relationship
between these variables and elevation (Thornton et al. 1997).

Relative humidity can be either interpolated (in fact, dew-point temperature is the variable
being interpolated) or predicted from temperature estimates, depending on whether it was
measured in in the set of reference points (surface stations).

Potential solar radiation is estimated taking into account latitude, seasonality, aspect and slope.
Actual solar irradiance is then estimated from potential radiation by including the effect of
atmosphere transmittance using the predictions of temperature range, relative humidity and
precipitation (Thornton & Running 1999).

https://daymet.ornl.gov/

4. Spatial variation of climate forcing: meteoland
Weather interpolation
Interpolation methods

The general procedure for interpolation is very similar to the one that underpins the U.S. DAYMET
dataset (https://daymet.ornl.gov/).

Minimum temperature, maximum temperature and precipitation are interpolated from a set of
point weather records using truncated Gaussian filters, while accounting for the relationship
between these variables and elevation (Thornton et al. 1997).

Relative humidity can be either interpolated (in fact, dew-point temperature is the variable
being interpolated) or predicted from temperature estimates, depending on whether it was
measured in in the set of reference points (surface stations).

Potential solar radiation is estimated taking into account latitude, seasonality, aspect and slope.
Actual solar irradiance is then estimated from potential radiation by including the effect of
atmosphere transmittance using the predictions of temperature range, relative humidity and
precipitation (Thornton & Running 1999).

The wind vector (wind direction and wind speed) is interpolated by using weather station
records and static wind fields.

https://daymet.ornl.gov/

4. Spatial variation of climate forcing: meteoland
Weather interpolation
MeteorologyInterpolationData

Package meteoland stores weather series for reference locations (surface weather stations) and
interpolation parameters in a single object of class MeteorologyInterpolationData.

4. Spatial variation of climate forcing: meteoland
Weather interpolation
MeteorologyInterpolationData

Package meteoland stores weather series for reference locations (surface weather stations) and
interpolation parameters in a single object of class MeteorologyInterpolationData.

Warning: Collecting and assembling surface weather records into an object of
MeteorologyInterpolationData is the tedious part of using package meteoland.

4. Spatial variation of climate forcing: meteoland
Weather interpolation
MeteorologyInterpolationData

Package meteoland stores weather series for reference locations (surface weather stations) and
interpolation parameters in a single object of class MeteorologyInterpolationData.

Warning: Collecting and assembling surface weather records into an object of
MeteorologyInterpolationData is the tedious part of using package meteoland.

Interpolation functions

Interpolation is conducted using different R functions depending on the spatial input:

Spatial input Interpolation function Spatial output

SpatialPointsTopography interpolationpoints() SpatialPointsMeteorology

SpatialGridTopography interpolationgrid() SpatialGridMeteorology

SpatialPixelsTopography interpolationpixels() SpatialPixelsMeteorology

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
Concept

The general idea of correction is that a fine-scale weather series is compared to a coarse-scale series
for a reference (historical) period. The result of this comparison can be used to correct coarse-scale
weather series for a target (e.g. future) period.

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
Concept

The general idea of correction is that a fine-scale weather series is compared to a coarse-scale series
for a reference (historical) period. The result of this comparison can be used to correct coarse-scale
weather series for a target (e.g. future) period.

Correction methods

Let be the value of the variable of the more accurate (e.g. local) series for a given day and the
corresponding value for the less accurate series (e.g., climate model output).

Users can choose between three different types of corrections:

1. Unbiasing: consists in subtracting, from the series to be corrected, the average difference
between the two series for the reference period: .

xi i ui

θ = ∑
n

i
(ui − xi)/n

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
Concept

The general idea of correction is that a fine-scale weather series is compared to a coarse-scale series
for a reference (historical) period. The result of this comparison can be used to correct coarse-scale
weather series for a target (e.g. future) period.

Correction methods

Let be the value of the variable of the more accurate (e.g. local) series for a given day and the
corresponding value for the less accurate series (e.g., climate model output).

Users can choose between three different types of corrections:

1. Unbiasing: consists in subtracting, from the series to be corrected, the average difference
between the two series for the reference period: .

2. Scaling: A slope is calculated by regressing on through the origin using data of the reference
period. The slope can then be used as scaling factor to multiply the values of for any day of the
period of interest.

xi i ui

θ = ∑
n

i
(ui − xi)/n

u x

u

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
Concept

The general idea of correction is that a fine-scale weather series is compared to a coarse-scale series
for a reference (historical) period. The result of this comparison can be used to correct coarse-scale
weather series for a target (e.g. future) period.

Correction methods

Let be the value of the variable of the more accurate (e.g. local) series for a given day and the
corresponding value for the less accurate series (e.g., climate model output).

Users can choose between three different types of corrections:

1. Unbiasing: consists in subtracting, from the series to be corrected, the average difference
between the two series for the reference period: .

2. Scaling: A slope is calculated by regressing on through the origin using data of the reference
period. The slope can then be used as scaling factor to multiply the values of for any day of the
period of interest.

3. Empirical quantile mapping: Consists in comparing the empirical cumulative distribution
function (CDF) of the two series for the reference period, and this mapping is used to correct
values of for the target period.

xi i ui

θ = ∑
n

i
(ui − xi)/n

u x

u

u

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
MeteorologyUncorrectedData

Statistical correction needs an object of class MeteorologyUncorrectedData, containing the
coarse-scale data to be corrected (for both the reference and target periods) and the correction
method to be used for each variable. e.g.

u <- MeteorologyUncorrectedData(sp, u_reference, u_target, ...)

4. Spatial variation of climate forcing: meteoland
Downscaling and bias correction
MeteorologyUncorrectedData

Statistical correction needs an object of class MeteorologyUncorrectedData, containing the
coarse-scale data to be corrected (for both the reference and target periods) and the correction
method to be used for each variable. e.g.

u <- MeteorologyUncorrectedData(sp, u_reference, u_target, ...)

Correction function

Correction is performed using function correctionpoints(), which takes as input the object of
class MeteorologyUncorrectedData and an object of class SpatialPointsMeteorology with the
fine-scale data for the reference period.

y <- correctionpoints(u, x)

The function will take all points in x as spatial target locations to perform the correction (and
implicitly downscaling) of the coarse-scale data in u.

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

The package allows executing the models available in package medfate on points and cells within
landscape, in either sequentially or using parallel computation.

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

The package allows executing the models available in package medfate on points and cells within
landscape, in either sequentially or using parallel computation.

In addition, medfateland implements spatial hydrological processes for simulations in forested
watersheds.

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

The package allows executing the models available in package medfate on points and cells within
landscape, in either sequentially or using parallel computation.

In addition, medfateland implements spatial hydrological processes for simulations in forested
watersheds.

Installation and documentation
The package is available at GitHub only:

remotes::install_github("emf-creaf/medfateland")

5. Simulation over landscapes: medfateland
Purpose
The R package medfateland (under development) has been designed to run simulations of forest
functioning and dynamics at the landscape and regional scales.

The package allows executing the models available in package medfate on points and cells within
landscape, in either sequentially or using parallel computation.

In addition, medfateland implements spatial hydrological processes for simulations in forested
watersheds.

Installation and documentation
The package is available at GitHub only:

remotes::install_github("emf-creaf/medfateland")

Information about the design of medfateland can be found in its website and in medfate’s reference
book.

https://emf-creaf.github.io/medfateland/
https://emf-creaf.github.io/medfatebook/index.html

5. Simulation over landscapes: medfateland
Data structures
Package medfateland offers three spatial classes that inherit fields from three corresponding classes
in package meteoland:

SpatialPointsLandscape: represents a set of forest stands (including soil description) as
points within a landscape. Extends class SpatialPointsTopography.
SpatialPixelsLandscape: represents a set of forests (including soil description) or other land
cover units (i.e. agricultural, rock outcrops or urban areas) as pixels within a gridded landscape.
Extends class SpatialPixelsTopography.
SpatialGridLandscape: represents a set of forests (including soil description) or other land
cover units (i.e. agricultural, rock outcrops or urban areas) as pixels within a complete grid.
Extends class SpatialGridTopography.

5. Simulation over landscapes: medfateland
Data structures
Package medfateland offers three spatial classes that inherit fields from three corresponding classes
in package meteoland:

SpatialPointsLandscape: represents a set of forest stands (including soil description) as
points within a landscape. Extends class SpatialPointsTopography.
SpatialPixelsLandscape: represents a set of forests (including soil description) or other land
cover units (i.e. agricultural, rock outcrops or urban areas) as pixels within a gridded landscape.
Extends class SpatialPixelsTopography.
SpatialGridLandscape: represents a set of forests (including soil description) or other land
cover units (i.e. agricultural, rock outcrops or urban areas) as pixels within a complete grid.
Extends class SpatialGridTopography.

An additional spatial class is defined for watershed ecohydrological modelling:

DistributedWatershed: Represents a (forested) watershed, including land cover units (i.e.
agricultural, rock outcrops or urban areas), forest and soil information as well as bedrock
properties. Extends class SpatialPixelsLandscape.

5. Simulation over landscapes: medfateland
Data structures
There are example spatial landscape objects in the package, e.g. a SpatialPointsLandscape:

data("examplepointslandscape")

5. Simulation over landscapes: medfateland
Data structures
There are example spatial landscape objects in the package, e.g. a SpatialPointsLandscape:

data("examplepointslandscape")

Using plot() functions for spatial landscape objects, we can draw maps of some variables using:

plot(examplepointslandscape, "basalArea")

5. Simulation over landscapes: medfateland
Data structures
Another example concerns a DistributedWatershed:

data("examplewatershed")

plot(examplewatershed, "basalArea")

5. Simulation over landscapes: medfateland
Data structures
Another example concerns a DistributedWatershed:

data("examplewatershed")

plot(examplewatershed, "basalArea")

The set of maps available can be known by inspecting the help of function getLandscapeLayer().

5. Simulation over landscapes: medfateland
Data structures
Another example concerns a DistributedWatershed:

data("examplewatershed")

plot(examplewatershed, "basalArea")

The set of maps available can be known by inspecting the help of function getLandscapeLayer().

Alternatively, the package provides function shinyplotland() to display maps interactively.

5. Simulation over landscapes: medfateland
Dynamic simulation functions
A large number of simulation functions are included in package medfateland:

Spatial structure Water balance (1 day) Water balance (n days) Forest growth Forest dynamics

SpatialPointsLandscape spwbpoints_day() spwbpoints() growthpoints() fordynpoints()

SpatialPixelsLandscape spwbpixels_day() spwbpixels() growthpixels() fordynpixels()

SpatialGridLandscape spwbgrid_day() spwbgrid() growthgrid() fordyngrid()

DistributedWatershed spwbland() growthland()

5. Simulation over landscapes: medfateland
Dynamic simulation functions
A large number of simulation functions are included in package medfateland:

Spatial structure Water balance (1 day) Water balance (n days) Forest growth Forest dynamics

SpatialPointsLandscape spwbpoints_day() spwbpoints() growthpoints() fordynpoints()

SpatialPixelsLandscape spwbpixels_day() spwbpixels() growthpixels() fordynpixels()

SpatialGridLandscape spwbgrid_day() spwbgrid() growthgrid() fordyngrid()

DistributedWatershed spwbland() growthland()

Most of these functions make internal calls to spwb(), growth() or fordyn() on points or grid cells
of the spatial classes.

5. Simulation over landscapes: medfateland
Dynamic simulation functions
A large number of simulation functions are included in package medfateland:

Spatial structure Water balance (1 day) Water balance (n days) Forest growth Forest dynamics

SpatialPointsLandscape spwbpoints_day() spwbpoints() growthpoints() fordynpoints()

SpatialPixelsLandscape spwbpixels_day() spwbpixels() growthpixels() fordynpixels()

SpatialGridLandscape spwbgrid_day() spwbgrid() growthgrid() fordyngrid()

DistributedWatershed spwbland() growthland()

Most of these functions make internal calls to spwb(), growth() or fordyn() on points or grid cells
of the spatial classes.

Important: Since most functions do not account for spatial processes, there are parameters to allow
the user to specify parallel computation.

5. Simulation over landscapes: medfateland
Climate forcing in large-scale simulations
Simulation functions of medfateland accept objects of class MeteorologyInterpolationData as
input, which allows performing interpolation at the time of performing simulations.

5. Simulation over landscapes: medfateland
Climate forcing in large-scale simulations
Simulation functions of medfateland accept objects of class MeteorologyInterpolationData as
input, which allows performing interpolation at the time of performing simulations.

The following workflow can be envisaged for large-scale simulations with medfateland:

M.C. Escher - Belvedere, 1958

