
Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.

Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.

As a result of the abandonment of former coppicing in the area, there is a high density of stems per
individual in the control plot.

Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.

As a result of the abandonment of former coppicing in the area, there is a high density of stems per
individual in the control plot.

The management involved a reduction of the number of stems per individual (sucker cutback or
selecció de tanys).

Exercise solution
Step 1. Loading packages
You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")

Exercise solution
Step 1. Loading packages
You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")

We begin by loading packages medfate, medfateutils and meteoland

library(medfate)

library(medfateutils)

library(meteoland)

Exercise solution
Step 1. Loading packages
You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")

We begin by loading packages medfate, medfateutils and meteoland

library(medfate)

library(medfateutils)

library(meteoland)

Step 2. Load and inspect Poblet data
Normally, tree data would be in a .csv or .xlsx file. Here, we simply load the tree data from Poblet
included in the package:

data("poblet_trees")

Exercise solution
Step 2. Load and inspect Poblet data
We can inspect its content, for example using:

summary(poblet_trees)

Plot.Code Indv.Ref Species Diameter.cm

Length:717 Min. : 1.0 Length:717 Min. : 7.50

Class :character 1st Qu.: 45.0 Class :character 1st Qu.: 9.10

Mode :character Median : 97.0 Mode :character Median :11.10

Mean :103.4 Mean :11.62

3rd Qu.:156.0 3rd Qu.:13.40

Max. :261.0 Max. :26.00

Exercise solution
Step 2. Load and inspect Poblet data
We can inspect its content, for example using:

summary(poblet_trees)

Plot.Code Indv.Ref Species Diameter.cm

Length:717 Min. : 1.0 Length:717 Min. : 7.50

Class :character 1st Qu.: 45.0 Class :character 1st Qu.: 9.10

Mode :character Median : 97.0 Mode :character Median :11.10

Mean :103.4 Mean :11.62

3rd Qu.:156.0 3rd Qu.:13.40

Max. :261.0 Max. :26.00

The data frame includes tree data corresponding to three forest inventories:

table(poblet_trees$Plot.Code)

POBL_CTL POBL_THI_AFT POBL_THI_BEF

267 189 261

Exercise solution
Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

Exercise solution
Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

To fill data for element treeData in the forest object, we need to define a mapping from column
names in poblet_trees to variables in treeData. The mapping can be defined using a named
string vector, i.e. a vector where element names are variable names in treeData and vector
elements are strings of the variable names in poblet_trees:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm")

Note: Using "Species.name" = "Species" we indicate that the function should interpret values in
column Species as species names, not species codes.

Exercise solution
Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

To fill data for element treeData in the forest object, we need to define a mapping from column
names in poblet_trees to variables in treeData. The mapping can be defined using a named
string vector, i.e. a vector where element names are variable names in treeData and vector
elements are strings of the variable names in poblet_trees:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm")

Note: Using "Species.name" = "Species" we indicate that the function should interpret values in
column Species as species names, not species codes.

We can now replace the empty treeData in pobl_ctl using functions subset() and
forest_mapTreeTable() from medfateutils:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"),

 mapping_x = mapping, SpParams = SpParamsMED)

Exercise solution
Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

Exercise solution
Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

One way to evaluate if the tree data is correctly specified is to display a summary of the forest
object using the summary() function defined in medfate for this object class:

summary(pobl_ctl, SpParamsMED)

ID: POBL_CTL

Tree density (ind/ha): 267

Tree BA (m2/ha): 3.0179815

Cover (%) trees (open ground): 42.1205627 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 0.530447 trees: 0.530447 shrubs: 0

Live fine fuel (kg/m2) total: 0.1372838 trees: 0.1372838 shrubs: 0

PAR ground (%): NA SWR ground (%): NA

Exercise solution
Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

One way to evaluate if the tree data is correctly specified is to display a summary of the forest
object using the summary() function defined in medfate for this object class:

summary(pobl_ctl, SpParamsMED)

ID: POBL_CTL

Tree density (ind/ha): 267

Tree BA (m2/ha): 3.0179815

Cover (%) trees (open ground): 42.1205627 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 0.530447 trees: 0.530447 shrubs: 0

Live fine fuel (kg/m2) total: 0.1372838 trees: 0.1372838 shrubs: 0

PAR ground (%): NA SWR ground (%): NA

Are the values of tree density, stand basal area and stand LAI acceptable for a dense oak forest?

Exercise solution
Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

Exercise solution
Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

and use this information to map the tree data again, where we specify the parameter plot_size_x:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"),

 mapping = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

Exercise solution
Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

and use this information to map the tree data again, where we specify the parameter plot_size_x:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"),

 mapping = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

We run again the summary and check whether stand's basal area and LAI make more sense:

summary(pobl_ctl, SpParamsMED)

ID: POBL_CTL

Tree density (ind/ha): 3777.27731604765

Tree BA (m2/ha): 42.6957047

Cover (%) trees (open ground): 100 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 6.7141704 trees: 6.7141704 shrubs: 0

Live fine fuel (kg/m2) total: 1.7424533 trees: 1.7424533 shrubs: 0

PAR ground (%): NA SWR ground (%): NA

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

Min. 1st Qu. Median Mean 3rd Qu. Max.

512.9 566.9 628.3 638.0 692.7 976.5

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

Min. 1st Qu. Median Mean 3rd Qu. Max.

512.9 566.9 628.3 638.0 692.7 976.5

Once tree heights are defined, we can include them in our mapping vector:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm", "Height" = "Height.cm")

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

Min. 1st Qu. Median Mean 3rd Qu. Max.

512.9 566.9 628.3 638.0 692.7 976.5

Once tree heights are defined, we can include them in our mapping vector:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm", "Height" = "Height.cm")

and rerun the tree data mapping.

Exercise solution
Step 7. Mapping trees from the managed stand
Now we can address the managed stand, which has two codes corresponding to before and after the
thinning intervention. Let us first deal with the pre-thinning state:

pobl_thi_bef <- emptyforest("POBL_THI_BEF")

pobl_thi_bef$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_BEF"),

 mapping_x = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

summary(pobl_thi_bef$treeData)

Species N Height DBH Z50 Z95

Min. : 4.0 Min. :14.15 Min. :512.9 Min. : 7.50 Mode:logical Mode:logical

1st Qu.: 19.0 1st Qu.:14.15 1st Qu.:563.7 1st Qu.: 9.00 NA's:261 NA's:261

Median :168.0 Median :14.15 Median :628.3 Median :11.10

Mean :114.5 Mean :14.15 Mean :635.5 Mean :11.51

3rd Qu.:168.0 3rd Qu.:14.15 3rd Qu.:681.9 3rd Qu.:13.00

Max. :168.0 Max. :14.15 Max. :944.9 Max. :24.40

NA's :2

Beware of the missing values in column Species

Exercise solution
Step 8. Fixing species nomenclature
The Species variable contains two missing values. This will normally happen when some species
cannot be identified. We can verify if this happens for other parts of the Poblet tree data:

sum(!(poblet_trees$Species %in% SpParamsMED$Name))

[1] 4

If we display species counts we can identify which species is not being parsed:

table(poblet_trees$Species)

Acer monspessulanum Arbutus unedo Phillyrea latifolia Quercus humilis Quercus ilex

2 265 6 4 440

In this case, the name used for the downy oak (Quercus humilis) is a synonym and needs to be
replaced by its accepted name (Quercus pubescens), e.g.:

poblet_trees$Species[poblet_trees$Species=="Quercus humilis"] <- "Quercus pubescens"

Exercise solution
Step 8. Fixing species nomenclature
Now we repeat our mapping and check the results:

pobl_thi_bef$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_BEF"),

 mapping_x = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

summary(pobl_thi_bef, SpParamsMED)

ID: POBL_THI_BEF

Tree density (ind/ha): 3692.39467973197

Tree BA (m2/ha): 40.9224267

Cover (%) trees (open ground): 100 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 6.5530107 trees: 6.5530107 shrubs: 0

Live fine fuel (kg/m2) total: 1.6994566 trees: 1.6994566 shrubs: 0

PAR ground (%): 2.7210404 SWR ground (%): 6.9269881

Like the control plot, the summary() indicates a dense oak forest.

Exercise solution
Step 9. Mapping trees from the managed stand
We can finally map tree data for the forest plot after the thinning intervention:

pobl_thi_aft <- emptyforest("POBL_THI_AFT")

pobl_thi_aft$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_AFT"),

 mapping_x = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

summary(pobl_thi_aft, SpParamsMED)

ID: POBL_THI_AFT

Tree density (ind/ha): 2673.80304394384

Tree BA (m2/ha): 31.6162035

Cover (%) trees (open ground): 100 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 5.0833939 trees: 5.0833939 shrubs: 0

Live fine fuel (kg/m2) total: 1.3224411 trees: 1.3224411 shrubs: 0

PAR ground (%): 6.1061933 SWR ground (%): 12.6058106

And check the reduction caused by the thinning.

Exercise solution
Step 10. Checking the number of cohorts
So far we have considered that each tree record should correspond to a woody cohort. We can check
the number of tree cohorts in each forest structure using:

nrow(pobl_ctl$treeData)

[1] 267

nrow(pobl_thi_bef$treeData)

[1] 261

nrow(pobl_thi_aft$treeData)

[1] 189

Exercise solution
Step 10. Checking the number of cohorts
So far we have considered that each tree record should correspond to a woody cohort. We can check
the number of tree cohorts in each forest structure using:

nrow(pobl_ctl$treeData)

[1] 267

nrow(pobl_thi_bef$treeData)

[1] 261

nrow(pobl_thi_aft$treeData)

[1] 189

This large amount of cohorts can slow done simulations considerably!

Exercise solution
Step 11. Reducing the number of cohorts
One way of reducing the number of cohorts is via function forest_mergeTrees() from package
medfate:

pobl_ctl <- forest_mergeTrees(pobl_ctl)

pobl_thi_bef <- forest_mergeTrees(pobl_thi_bef)

pobl_thi_aft <- forest_mergeTrees(pobl_thi_aft)

By default, the function will pool tree cohorts of the same species and diameter class (defined every 5
cm).

Exercise solution
Step 11. Reducing the number of cohorts
One way of reducing the number of cohorts is via function forest_mergeTrees() from package
medfate:

pobl_ctl <- forest_mergeTrees(pobl_ctl)

pobl_thi_bef <- forest_mergeTrees(pobl_thi_bef)

pobl_thi_aft <- forest_mergeTrees(pobl_thi_aft)

By default, the function will pool tree cohorts of the same species and diameter class (defined every 5
cm).

We can check the new number of tree cohorts using again:

nrow(pobl_ctl$treeData)

[1] 9

nrow(pobl_thi_bef$treeData)

[1] 11

nrow(pobl_thi_aft$treeData)

[1] 8

Exercise solution
Step 11. Reducing the number of cohorts
We can check whether stand properties were altered using the summary() function:

summary(pobl_thi_aft, SpParamsMED)

ID: POBL_THI_AFT

Tree density (ind/ha): 2673.80304394384

Tree BA (m2/ha): 31.6162035

Cover (%) trees (open ground): 100 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 5.1144373 trees: 5.1144373 shrubs: 0

Live fine fuel (kg/m2) total: 1.3298915 trees: 1.3298915 shrubs: 0

PAR ground (%): 6.0028221 SWR ground (%): 12.4473851

Function forest_mergeTrees() will preserve the stand density and basal area that the stand
description had before merging cohorts. Other properties like leaf area index may be slightly
modified.

Tip: It is advisable to reduce the number of woody cohorts before running simulation models in
medfate.

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))

This object can be used to query SoilGrids using soilgridsParams():

pobl_soil_props <- soilgridsParams(coords_sp, widths = c(300, 700, 1000))

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))

This object can be used to query SoilGrids using soilgridsParams():

pobl_soil_props <- soilgridsParams(coords_sp, widths = c(300, 700, 1000))

This function returns a data frame of soil properties:

pobl_soil_props

widths clay sand om bd rfc

1 300 26.43333 31.06667 4.133333 1.166667 18.0

2 700 30.40000 29.75000 0.900000 1.440000 19.2

3 1000 31.60000 29.60000 0.610000 1.500000 20.9

Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

SoilGrids usually underestimates the amount of rocks in the soil, because soil samples do not normally
contain large stones or blocks. Realistic simulations should reduce the soil water holding capacity by
increasing rfc. For example, here we will assume that the third layer contains 80% of rocks:

pobl_soil_props$rfc[3] = 80

Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

SoilGrids usually underestimates the amount of rocks in the soil, because soil samples do not normally
contain large stones or blocks. Realistic simulations should reduce the soil water holding capacity by
increasing rfc. For example, here we will assume that the third layer contains 80% of rocks:

pobl_soil_props$rfc[3] = 80

If we rebuild the soil object and inspect its properties...

pobl_soil <- soil(pobl_soil_props)

pobl_soil

...we will see the decrease in water-holding capacity.

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

 elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

Object of class SpatialPointsTopography

coordinates elevation slope aspect

1 (1.0219, 41.3443) 850 15.1 15

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

 elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

Object of class SpatialPointsTopography

coordinates elevation slope aspect

1 (1.0219, 41.3443) 850 15.1 15

The more difficult part of using package meteoland is to assemble weather data from surface
weather stations into an object of class MeteorologyInterpolationData.

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

 elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

Object of class SpatialPointsTopography

coordinates elevation slope aspect

1 (1.0219, 41.3443) 850 15.1 15

The more difficult part of using package meteoland is to assemble weather data from surface
weather stations into an object of class MeteorologyInterpolationData.

Here we will assume that such an object is already available, by using the example object provided in
the meteoland package.

data("exampleinterpolationdata")

Exercise solution
Steps 16-17. Interpolating weather
Once we have this interpolator, obtaining interpolated weather for a set of target points is rather
straightforward using function interpolationpoints() from meteoland:

meteo <- interpolationpoints(exampleinterpolationdata, pobl_spt)

Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): CRS projection of 'points'

adapted to that of 'object'.

Processing point '1' (1/1) -

Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): Point '1' outside the boundary

box of interpolation data object.

done.

Note that a warning was raised, because the boundary box of the interpolator does not include the
location of the Poblet forests. In this case, the result of the interpolation is not reliable and should not
be used!

Exercise solution
Steps 16-17. Interpolating weather
Once we have this interpolator, obtaining interpolated weather for a set of target points is rather
straightforward using function interpolationpoints() from meteoland:

meteo <- interpolationpoints(exampleinterpolationdata, pobl_spt)

Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): CRS projection of 'points'

adapted to that of 'object'.

Processing point '1' (1/1) -

Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): Point '1' outside the boundary

box of interpolation data object.

done.

Note that a warning was raised, because the boundary box of the interpolator does not include the
location of the Poblet forests. In this case, the result of the interpolation is not reliable and should not
be used!

The output of function interpolationpoints() is an object of S4 class
SpatialPointsMeteorology. We can access the weather data frame by subsetting the appropriate
element of slot data:

pobl_weather <- meteo@data[[1]]

head(pobl_weather, 2)

M.C. Escher - Babel tower, 1928

1.4 - Model inputs (exercise)
Miquel De Cáceres, Victor Granda, Aitor Ameztegui

Ecosystem Modelling Facility

2022-06-13

Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.

Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.

As a result of the abandonment of former coppicing in the area, there is a high density of stems per
individual in the control plot.

Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.

As a result of the abandonment of former coppicing in the area, there is a high density of stems per
individual in the control plot.

The management involved a reduction of the number of stems per individual (sucker cutback or
selecció de tanys).

Exercise solution
Step 1. Loading packages
You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")

Exercise solution
Step 1. Loading packages
You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")

We begin by loading packages medfate, medfateutils and meteoland

library(medfate)

library(medfateutils)

library(meteoland)

Exercise solution
Step 1. Loading packages
You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")

We begin by loading packages medfate, medfateutils and meteoland

library(medfate)

library(medfateutils)

library(meteoland)

Step 2. Load and inspect Poblet data
Normally, tree data would be in a .csv or .xlsx file. Here, we simply load the tree data from Poblet
included in the package:

data("poblet_trees")

Exercise solution
Step 2. Load and inspect Poblet data
We can inspect its content, for example using:

summary(poblet_trees)

Plot.Code Indv.Ref Species Diameter.cm

Length:717 Min. : 1.0 Length:717 Min. : 7.50

Class :character 1st Qu.: 45.0 Class :character 1st Qu.: 9.10

Mode :character Median : 97.0 Mode :character Median :11.10

Mean :103.4 Mean :11.62

3rd Qu.:156.0 3rd Qu.:13.40

Max. :261.0 Max. :26.00

Exercise solution
Step 2. Load and inspect Poblet data
We can inspect its content, for example using:

summary(poblet_trees)

Plot.Code Indv.Ref Species Diameter.cm

Length:717 Min. : 1.0 Length:717 Min. : 7.50

Class :character 1st Qu.: 45.0 Class :character 1st Qu.: 9.10

Mode :character Median : 97.0 Mode :character Median :11.10

Mean :103.4 Mean :11.62

3rd Qu.:156.0 3rd Qu.:13.40

Max. :261.0 Max. :26.00

The data frame includes tree data corresponding to three forest inventories:

table(poblet_trees$Plot.Code)

POBL_CTL POBL_THI_AFT POBL_THI_BEF

267 189 261

Exercise solution
Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

Exercise solution
Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

To fill data for element treeData in the forest object, we need to define a mapping from column
names in poblet_trees to variables in treeData. The mapping can be defined using a named
string vector, i.e. a vector where element names are variable names in treeData and vector
elements are strings of the variable names in poblet_trees:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm")

Note: Using "Species.name" = "Species" we indicate that the function should interpret values in
column Species as species names, not species codes.

Exercise solution
Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

To fill data for element treeData in the forest object, we need to define a mapping from column
names in poblet_trees to variables in treeData. The mapping can be defined using a named
string vector, i.e. a vector where element names are variable names in treeData and vector
elements are strings of the variable names in poblet_trees:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm")

Note: Using "Species.name" = "Species" we indicate that the function should interpret values in
column Species as species names, not species codes.

We can now replace the empty treeData in pobl_ctl using functions subset() and
forest_mapTreeTable() from medfateutils:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"),

 mapping_x = mapping, SpParams = SpParamsMED)

Exercise solution
Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

Exercise solution
Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

One way to evaluate if the tree data is correctly specified is to display a summary of the forest
object using the summary() function defined in medfate for this object class:

summary(pobl_ctl, SpParamsMED)

ID: POBL_CTL

Tree density (ind/ha): 267

Tree BA (m2/ha): 3.0179815

Cover (%) trees (open ground): 42.1205627 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 0.530447 trees: 0.530447 shrubs: 0

Live fine fuel (kg/m2) total: 0.1372838 trees: 0.1372838 shrubs: 0

PAR ground (%): NA SWR ground (%): NA

Exercise solution
Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

One way to evaluate if the tree data is correctly specified is to display a summary of the forest
object using the summary() function defined in medfate for this object class:

summary(pobl_ctl, SpParamsMED)

ID: POBL_CTL

Tree density (ind/ha): 267

Tree BA (m2/ha): 3.0179815

Cover (%) trees (open ground): 42.1205627 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 0.530447 trees: 0.530447 shrubs: 0

Live fine fuel (kg/m2) total: 0.1372838 trees: 0.1372838 shrubs: 0

PAR ground (%): NA SWR ground (%): NA

Are the values of tree density, stand basal area and stand LAI acceptable for a dense oak forest?

Exercise solution
Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

Exercise solution
Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

and use this information to map the tree data again, where we specify the parameter plot_size_x:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"),

 mapping = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

Exercise solution
Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

and use this information to map the tree data again, where we specify the parameter plot_size_x:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"),

 mapping = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

We run again the summary and check whether stand's basal area and LAI make more sense:

summary(pobl_ctl, SpParamsMED)

ID: POBL_CTL

Tree density (ind/ha): 3777.27731604765

Tree BA (m2/ha): 42.6957047

Cover (%) trees (open ground): 100 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 6.7141704 trees: 6.7141704 shrubs: 0

Live fine fuel (kg/m2) total: 1.7424533 trees: 1.7424533 shrubs: 0

PAR ground (%): NA SWR ground (%): NA

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

Min. 1st Qu. Median Mean 3rd Qu. Max.

512.9 566.9 628.3 638.0 692.7 976.5

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

Min. 1st Qu. Median Mean 3rd Qu. Max.

512.9 566.9 628.3 638.0 692.7 976.5

Once tree heights are defined, we can include them in our mapping vector:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm", "Height" = "Height.cm")

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

Min. 1st Qu. Median Mean 3rd Qu. Max.

512.9 566.9 628.3 638.0 692.7 976.5

Once tree heights are defined, we can include them in our mapping vector:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm", "Height" = "Height.cm")

and rerun the tree data mapping.

Exercise solution
Step 7. Mapping trees from the managed stand
Now we can address the managed stand, which has two codes corresponding to before and after the
thinning intervention. Let us first deal with the pre-thinning state:

pobl_thi_bef <- emptyforest("POBL_THI_BEF")

pobl_thi_bef$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_BEF"),

 mapping_x = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

summary(pobl_thi_bef$treeData)

Species N Height DBH Z50 Z95

Min. : 4.0 Min. :14.15 Min. :512.9 Min. : 7.50 Mode:logical Mode:logical

1st Qu.: 19.0 1st Qu.:14.15 1st Qu.:563.7 1st Qu.: 9.00 NA's:261 NA's:261

Median :168.0 Median :14.15 Median :628.3 Median :11.10

Mean :114.5 Mean :14.15 Mean :635.5 Mean :11.51

3rd Qu.:168.0 3rd Qu.:14.15 3rd Qu.:681.9 3rd Qu.:13.00

Max. :168.0 Max. :14.15 Max. :944.9 Max. :24.40

NA's :2

Beware of the missing values in column Species

Exercise solution
Step 8. Fixing species nomenclature
The Species variable contains two missing values. This will normally happen when some species
cannot be identified. We can verify if this happens for other parts of the Poblet tree data:

sum(!(poblet_trees$Species %in% SpParamsMED$Name))

[1] 4

If we display species counts we can identify which species is not being parsed:

table(poblet_trees$Species)

Acer monspessulanum Arbutus unedo Phillyrea latifolia Quercus humilis Quercus ilex

2 265 6 4 440

In this case, the name used for the downy oak (Quercus humilis) is a synonym and needs to be
replaced by its accepted name (Quercus pubescens), e.g.:

poblet_trees$Species[poblet_trees$Species=="Quercus humilis"] <- "Quercus pubescens"

Exercise solution
Step 8. Fixing species nomenclature
Now we repeat our mapping and check the results:

pobl_thi_bef$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_BEF"),

 mapping_x = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

summary(pobl_thi_bef, SpParamsMED)

ID: POBL_THI_BEF

Tree density (ind/ha): 3692.39467973197

Tree BA (m2/ha): 40.9224267

Cover (%) trees (open ground): 100 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 6.5530107 trees: 6.5530107 shrubs: 0

Live fine fuel (kg/m2) total: 1.6994566 trees: 1.6994566 shrubs: 0

PAR ground (%): 2.7210404 SWR ground (%): 6.9269881

Like the control plot, the summary() indicates a dense oak forest.

Exercise solution
Step 9. Mapping trees from the managed stand
We can finally map tree data for the forest plot after the thinning intervention:

pobl_thi_aft <- emptyforest("POBL_THI_AFT")

pobl_thi_aft$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_AFT"),

 mapping_x = mapping, SpParams = SpParamsMED,

 plot_size_x = sampled_area)

summary(pobl_thi_aft, SpParamsMED)

ID: POBL_THI_AFT

Tree density (ind/ha): 2673.80304394384

Tree BA (m2/ha): 31.6162035

Cover (%) trees (open ground): 100 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 5.0833939 trees: 5.0833939 shrubs: 0

Live fine fuel (kg/m2) total: 1.3224411 trees: 1.3224411 shrubs: 0

PAR ground (%): 6.1061933 SWR ground (%): 12.6058106

And check the reduction caused by the thinning.

Exercise solution
Step 10. Checking the number of cohorts
So far we have considered that each tree record should correspond to a woody cohort. We can check
the number of tree cohorts in each forest structure using:

nrow(pobl_ctl$treeData)

[1] 267

nrow(pobl_thi_bef$treeData)

[1] 261

nrow(pobl_thi_aft$treeData)

[1] 189

Exercise solution
Step 10. Checking the number of cohorts
So far we have considered that each tree record should correspond to a woody cohort. We can check
the number of tree cohorts in each forest structure using:

nrow(pobl_ctl$treeData)

[1] 267

nrow(pobl_thi_bef$treeData)

[1] 261

nrow(pobl_thi_aft$treeData)

[1] 189

This large amount of cohorts can slow done simulations considerably!

Exercise solution
Step 11. Reducing the number of cohorts
One way of reducing the number of cohorts is via function forest_mergeTrees() from package
medfate:

pobl_ctl <- forest_mergeTrees(pobl_ctl)

pobl_thi_bef <- forest_mergeTrees(pobl_thi_bef)

pobl_thi_aft <- forest_mergeTrees(pobl_thi_aft)

By default, the function will pool tree cohorts of the same species and diameter class (defined every 5
cm).

Exercise solution
Step 11. Reducing the number of cohorts
One way of reducing the number of cohorts is via function forest_mergeTrees() from package
medfate:

pobl_ctl <- forest_mergeTrees(pobl_ctl)

pobl_thi_bef <- forest_mergeTrees(pobl_thi_bef)

pobl_thi_aft <- forest_mergeTrees(pobl_thi_aft)

By default, the function will pool tree cohorts of the same species and diameter class (defined every 5
cm).

We can check the new number of tree cohorts using again:

nrow(pobl_ctl$treeData)

[1] 9

nrow(pobl_thi_bef$treeData)

[1] 11

nrow(pobl_thi_aft$treeData)

[1] 8

Exercise solution
Step 11. Reducing the number of cohorts
We can check whether stand properties were altered using the summary() function:

summary(pobl_thi_aft, SpParamsMED)

ID: POBL_THI_AFT

Tree density (ind/ha): 2673.80304394384

Tree BA (m2/ha): 31.6162035

Cover (%) trees (open ground): 100 shrubs: 0

Shrub crown phytovolume (m3/m2): 0

LAI (m2/m2) total: 5.1144373 trees: 5.1144373 shrubs: 0

Live fine fuel (kg/m2) total: 1.3298915 trees: 1.3298915 shrubs: 0

PAR ground (%): 6.0028221 SWR ground (%): 12.4473851

Function forest_mergeTrees() will preserve the stand density and basal area that the stand
description had before merging cohorts. Other properties like leaf area index may be slightly
modified.

Tip: It is advisable to reduce the number of woody cohorts before running simulation models in
medfate.

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))

This object can be used to query SoilGrids using soilgridsParams():

pobl_soil_props <- soilgridsParams(coords_sp, widths = c(300, 700, 1000))

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))

This object can be used to query SoilGrids using soilgridsParams():

pobl_soil_props <- soilgridsParams(coords_sp, widths = c(300, 700, 1000))

This function returns a data frame of soil properties:

pobl_soil_props

widths clay sand om bd rfc

1 300 26.43333 31.06667 4.133333 1.166667 18.0

2 700 30.40000 29.75000 0.900000 1.440000 19.2

3 1000 31.60000 29.60000 0.610000 1.500000 20.9

Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

SoilGrids usually underestimates the amount of rocks in the soil, because soil samples do not normally
contain large stones or blocks. Realistic simulations should reduce the soil water holding capacity by
increasing rfc. For example, here we will assume that the third layer contains 80% of rocks:

pobl_soil_props$rfc[3] = 80

Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

SoilGrids usually underestimates the amount of rocks in the soil, because soil samples do not normally
contain large stones or blocks. Realistic simulations should reduce the soil water holding capacity by
increasing rfc. For example, here we will assume that the third layer contains 80% of rocks:

pobl_soil_props$rfc[3] = 80

If we rebuild the soil object and inspect its properties...

pobl_soil <- soil(pobl_soil_props)

pobl_soil

...we will see the decrease in water-holding capacity.

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

 elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

Object of class SpatialPointsTopography

coordinates elevation slope aspect

1 (1.0219, 41.3443) 850 15.1 15

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

 elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

Object of class SpatialPointsTopography

coordinates elevation slope aspect

1 (1.0219, 41.3443) 850 15.1 15

The more difficult part of using package meteoland is to assemble weather data from surface
weather stations into an object of class MeteorologyInterpolationData.

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

 elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

Object of class SpatialPointsTopography

coordinates elevation slope aspect

1 (1.0219, 41.3443) 850 15.1 15

The more difficult part of using package meteoland is to assemble weather data from surface
weather stations into an object of class MeteorologyInterpolationData.

Here we will assume that such an object is already available, by using the example object provided in
the meteoland package.

data("exampleinterpolationdata")

Exercise solution
Steps 16-17. Interpolating weather
Once we have this interpolator, obtaining interpolated weather for a set of target points is rather
straightforward using function interpolationpoints() from meteoland:

meteo <- interpolationpoints(exampleinterpolationdata, pobl_spt)

Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): CRS projection of 'points'

adapted to that of 'object'.

Processing point '1' (1/1) -

Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): Point '1' outside the boundary

box of interpolation data object.

done.

Note that a warning was raised, because the boundary box of the interpolator does not include the
location of the Poblet forests. In this case, the result of the interpolation is not reliable and should not
be used!

Exercise solution
Steps 16-17. Interpolating weather
Once we have this interpolator, obtaining interpolated weather for a set of target points is rather
straightforward using function interpolationpoints() from meteoland:

meteo <- interpolationpoints(exampleinterpolationdata, pobl_spt)

Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): CRS projection of 'points'

adapted to that of 'object'.

Processing point '1' (1/1) -

Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): Point '1' outside the boundary

box of interpolation data object.

done.

Note that a warning was raised, because the boundary box of the interpolator does not include the
location of the Poblet forests. In this case, the result of the interpolation is not reliable and should not
be used!

The output of function interpolationpoints() is an object of S4 class
SpatialPointsMeteorology. We can access the weather data frame by subsetting the appropriate
element of slot data:

pobl_weather <- meteo@data[[1]]

head(pobl_weather, 2)

M.C. Escher - Babel tower, 1928

