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Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.
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Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.

As a result of the abandonment of former coppicing in the area, there is a high density of stems per
individual in the control plot.

The management involved a reduction of the number of stems per individual (sucker cutback or
selecció de tanys).
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Step 1. Loading packages
You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")

We begin by loading packages medfate, medfateutils and meteoland

library(medfate)

library(medfateutils)

library(meteoland)

Step 2. Load and inspect Poblet data
Normally, tree data would be in a .csv or .xlsx file. Here, we simply load the tree data from Poblet
included in the package:

data("poblet_trees")

Exercise solution
Step 2. Load and inspect Poblet data
We can inspect its content, for example using:

summary(poblet_trees)

##   Plot.Code            Indv.Ref       Species           Diameter.cm   

##  Length:717         Min.   :  1.0   Length:717         Min.   : 7.50  

##  Class :character   1st Qu.: 45.0   Class :character   1st Qu.: 9.10  

##  Mode  :character   Median : 97.0   Mode  :character   Median :11.10  

##                     Mean   :103.4                      Mean   :11.62  

##                     3rd Qu.:156.0                      3rd Qu.:13.40  

##                     Max.   :261.0                      Max.   :26.00
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Step 2. Load and inspect Poblet data
We can inspect its content, for example using:

summary(poblet_trees)

##   Plot.Code            Indv.Ref       Species           Diameter.cm   

##  Length:717         Min.   :  1.0   Length:717         Min.   : 7.50  

##  Class :character   1st Qu.: 45.0   Class :character   1st Qu.: 9.10  

##  Mode  :character   Median : 97.0   Mode  :character   Median :11.10  

##                     Mean   :103.4                      Mean   :11.62  

##                     3rd Qu.:156.0                      3rd Qu.:13.40  

##                     Max.   :261.0                      Max.   :26.00

The data frame includes tree data corresponding to three forest inventories:

table(poblet_trees$Plot.Code)

## 

##     POBL_CTL POBL_THI_AFT POBL_THI_BEF 

##          267          189          261

Exercise solution
Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")
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To fill data for element treeData in the forest object, we need to define a mapping from column
names in poblet_trees to variables in treeData. The mapping can be defined using a named
string vector, i.e. a vector where element names are variable names in treeData and vector
elements are strings of the variable names in poblet_trees:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm")

Note: Using "Species.name" = "Species" we indicate that the function should interpret values in
column Species as species names, not species codes.
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We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

To fill data for element treeData in the forest object, we need to define a mapping from column
names in poblet_trees to variables in treeData. The mapping can be defined using a named
string vector, i.e. a vector where element names are variable names in treeData and vector
elements are strings of the variable names in poblet_trees:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm")

Note: Using "Species.name" = "Species" we indicate that the function should interpret values in
column Species as species names, not species codes.

We can now replace the empty treeData in pobl_ctl using functions subset() and
forest_mapTreeTable() from medfateutils:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"), 

                                         mapping_x = mapping, SpParams = SpParamsMED)
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One way to evaluate if the tree data is correctly specified is to display a summary of the forest
object using the summary() function defined in medfate for this object class:

summary(pobl_ctl, SpParamsMED)

## ID: POBL_CTL 

## Tree density (ind/ha): 267 

## Tree BA (m2/ha): 3.0179815 

## Cover (%) trees (open ground): 42.1205627  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 0.530447  trees: 0.530447  shrubs: 0 

## Live fine fuel (kg/m2) total: 0.1372838  trees: 0.1372838  shrubs: 0 

## PAR ground (%): NA  SWR ground (%): NA
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Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

One way to evaluate if the tree data is correctly specified is to display a summary of the forest
object using the summary() function defined in medfate for this object class:

summary(pobl_ctl, SpParamsMED)

## ID: POBL_CTL 

## Tree density (ind/ha): 267 

## Tree BA (m2/ha): 3.0179815 

## Cover (%) trees (open ground): 42.1205627  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 0.530447  trees: 0.530447  shrubs: 0 

## Live fine fuel (kg/m2) total: 0.1372838  trees: 0.1372838  shrubs: 0 

## PAR ground (%): NA  SWR ground (%): NA

Are the values of tree density, stand basal area and stand LAI acceptable for a dense oak forest?
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Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2
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Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

and use this information to map the tree data again, where we specify the parameter plot_size_x:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"), 

                                         mapping = mapping, SpParams = SpParamsMED, 

                                         plot_size_x = sampled_area)

We run again the summary and check whether stand's basal area and LAI make more sense:

summary(pobl_ctl, SpParamsMED)

## ID: POBL_CTL 

## Tree density (ind/ha): 3777.27731604765 

## Tree BA (m2/ha): 42.6957047 

## Cover (%) trees (open ground): 100  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 6.7141704  trees: 6.7141704  shrubs: 0 

## Live fine fuel (kg/m2) total: 1.7424533  trees: 1.7424533  shrubs: 0 

## PAR ground (%): NA  SWR ground (%): NA

Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.
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##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

##   512.9   566.9   628.3   638.0   692.7   976.5
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Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

##   512.9   566.9   628.3   638.0   692.7   976.5

Once tree heights are defined, we can include them in our mapping vector:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm", "Height" = "Height.cm")

and rerun the tree data mapping.

Exercise solution
Step 7. Mapping trees from the managed stand
Now we can address the managed stand, which has two codes corresponding to before and after the
thinning intervention. Let us first deal with the pre-thinning state:

pobl_thi_bef <- emptyforest("POBL_THI_BEF")

pobl_thi_bef$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_BEF"), 

                                             mapping_x = mapping, SpParams = SpParamsMED, 

                                             plot_size_x = sampled_area)

summary(pobl_thi_bef$treeData)

##     Species            N             Height           DBH          Z50            Z95         

##  Min.   :  4.0   Min.   :14.15   Min.   :512.9   Min.   : 7.50   Mode:logical   Mode:logical  

##  1st Qu.: 19.0   1st Qu.:14.15   1st Qu.:563.7   1st Qu.: 9.00   NA's:261       NA's:261      

##  Median :168.0   Median :14.15   Median :628.3   Median :11.10                                

##  Mean   :114.5   Mean   :14.15   Mean   :635.5   Mean   :11.51                                

##  3rd Qu.:168.0   3rd Qu.:14.15   3rd Qu.:681.9   3rd Qu.:13.00                                

##  Max.   :168.0   Max.   :14.15   Max.   :944.9   Max.   :24.40                                

##  NA's   :2

Beware of the missing values in column Species

Exercise solution
Step 8. Fixing species nomenclature
The Species variable contains two missing values. This will normally happen when some species
cannot be identified. We can verify if this happens for other parts of the Poblet tree data:

sum(!(poblet_trees$Species %in% SpParamsMED$Name))

## [1] 4

If we display species counts we can identify which species is not being parsed:

table(poblet_trees$Species)

## 

## Acer monspessulanum       Arbutus unedo Phillyrea latifolia     Quercus humilis        Quercus ilex 

##                   2                 265                   6                   4                 440

In this case, the name used for the downy oak (Quercus humilis) is a synonym and needs to be
replaced by its accepted name (Quercus pubescens), e.g.:

poblet_trees$Species[poblet_trees$Species=="Quercus humilis"] <- "Quercus pubescens"

Exercise solution
Step 8. Fixing species nomenclature
Now we repeat our mapping and check the results:

pobl_thi_bef$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_BEF"), 

                                             mapping_x = mapping, SpParams = SpParamsMED, 

                                             plot_size_x = sampled_area)

summary(pobl_thi_bef, SpParamsMED)

## ID: POBL_THI_BEF 

## Tree density (ind/ha): 3692.39467973197 

## Tree BA (m2/ha): 40.9224267 

## Cover (%) trees (open ground): 100  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 6.5530107  trees: 6.5530107  shrubs: 0 

## Live fine fuel (kg/m2) total: 1.6994566  trees: 1.6994566  shrubs: 0 

## PAR ground (%): 2.7210404  SWR ground (%): 6.9269881

Like the control plot, the summary() indicates a dense oak forest.

Exercise solution
Step 9. Mapping trees from the managed stand
We can finally map tree data for the forest plot after the thinning intervention:

pobl_thi_aft <- emptyforest("POBL_THI_AFT")

pobl_thi_aft$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_AFT"), 

                                             mapping_x = mapping, SpParams = SpParamsMED, 

                                             plot_size_x = sampled_area)

summary(pobl_thi_aft, SpParamsMED)

## ID: POBL_THI_AFT 

## Tree density (ind/ha): 2673.80304394384 

## Tree BA (m2/ha): 31.6162035 

## Cover (%) trees (open ground): 100  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 5.0833939  trees: 5.0833939  shrubs: 0 

## Live fine fuel (kg/m2) total: 1.3224411  trees: 1.3224411  shrubs: 0 

## PAR ground (%): 6.1061933  SWR ground (%): 12.6058106

And check the reduction caused by the thinning.

Exercise solution
Step 10. Checking the number of cohorts
So far we have considered that each tree record should correspond to a woody cohort. We can check
the number of tree cohorts in each forest structure using:

nrow(pobl_ctl$treeData)

## [1] 267

nrow(pobl_thi_bef$treeData)

## [1] 261

nrow(pobl_thi_aft$treeData)

## [1] 189

Exercise solution
Step 10. Checking the number of cohorts
So far we have considered that each tree record should correspond to a woody cohort. We can check
the number of tree cohorts in each forest structure using:

nrow(pobl_ctl$treeData)

## [1] 267

nrow(pobl_thi_bef$treeData)

## [1] 261

nrow(pobl_thi_aft$treeData)

## [1] 189

This large amount of cohorts can slow done simulations considerably!

Exercise solution
Step 11. Reducing the number of cohorts
One way of reducing the number of cohorts is via function forest_mergeTrees() from package
medfate:

pobl_ctl <- forest_mergeTrees(pobl_ctl)

pobl_thi_bef <- forest_mergeTrees(pobl_thi_bef)

pobl_thi_aft <- forest_mergeTrees(pobl_thi_aft)

By default, the function will pool tree cohorts of the same species and diameter class (defined every 5
cm).
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Step 11. Reducing the number of cohorts
One way of reducing the number of cohorts is via function forest_mergeTrees() from package
medfate:

pobl_ctl <- forest_mergeTrees(pobl_ctl)

pobl_thi_bef <- forest_mergeTrees(pobl_thi_bef)

pobl_thi_aft <- forest_mergeTrees(pobl_thi_aft)

By default, the function will pool tree cohorts of the same species and diameter class (defined every 5
cm).

We can check the new number of tree cohorts using again:

nrow(pobl_ctl$treeData)

## [1] 9

nrow(pobl_thi_bef$treeData)

## [1] 11

nrow(pobl_thi_aft$treeData)

## [1] 8

Exercise solution
Step 11. Reducing the number of cohorts
We can check whether stand properties were altered using the summary() function:

summary(pobl_thi_aft, SpParamsMED)

## ID: POBL_THI_AFT 

## Tree density (ind/ha): 2673.80304394384 

## Tree BA (m2/ha): 31.6162035 

## Cover (%) trees (open ground): 100  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 5.1144373  trees: 5.1144373  shrubs: 0 

## Live fine fuel (kg/m2) total: 1.3298915  trees: 1.3298915  shrubs: 0 

## PAR ground (%): 6.0028221  SWR ground (%): 12.4473851

Function forest_mergeTrees() will preserve the stand density and basal area that the stand
description had before merging cohorts. Other properties like leaf area index may be slightly
modified.

Tip: It is advisable to reduce the number of woody cohorts before running simulation models in
medfate.

Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.
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cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))
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Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))

This object can be used to query SoilGrids using soilgridsParams():

pobl_soil_props <- soilgridsParams(coords_sp, widths = c(300, 700, 1000))

This function returns a data frame of soil properties:

pobl_soil_props

##   widths     clay     sand       om       bd  rfc

## 1    300 26.43333 31.06667 4.133333 1.166667 18.0

## 2    700 30.40000 29.75000 0.900000 1.440000 19.2

## 3   1000 31.60000 29.60000 0.610000 1.500000 20.9

Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).
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medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

SoilGrids usually underestimates the amount of rocks in the soil, because soil samples do not normally
contain large stones or blocks. Realistic simulations should reduce the soil water holding capacity by
increasing rfc. For example, here we will assume that the third layer contains 80% of rocks:

pobl_soil_props$rfc[3] = 80

Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

SoilGrids usually underestimates the amount of rocks in the soil, because soil samples do not normally
contain large stones or blocks. Realistic simulations should reduce the soil water holding capacity by
increasing rfc. For example, here we will assume that the third layer contains 80% of rocks:

pobl_soil_props$rfc[3] = 80

If we rebuild the soil object and inspect its properties...

pobl_soil <- soil(pobl_soil_props)

pobl_soil

...we will see the decrease in water-holding capacity.

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.
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Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

                                    elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

## Object of class SpatialPointsTopography

##         coordinates elevation slope aspect

## 1 (1.0219, 41.3443)       850  15.1     15
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The more difficult part of using package meteoland is to assemble weather data from surface
weather stations into an object of class MeteorologyInterpolationData.

Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

                                    elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

## Object of class SpatialPointsTopography

##         coordinates elevation slope aspect

## 1 (1.0219, 41.3443)       850  15.1     15

The more difficult part of using package meteoland is to assemble weather data from surface
weather stations into an object of class MeteorologyInterpolationData.

Here we will assume that such an object is already available, by using the example object provided in
the meteoland package.

data("exampleinterpolationdata")

Exercise solution
Steps 16-17. Interpolating weather
Once we have this interpolator, obtaining interpolated weather for a set of target points is rather
straightforward using function interpolationpoints() from meteoland:

meteo <- interpolationpoints(exampleinterpolationdata, pobl_spt)

## Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): CRS projection of 'points'

## adapted to that of 'object'.

## Processing point '1' (1/1) -

## Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): Point '1' outside the boundary

## box of interpolation data object.

##  done.

Note that a warning was raised, because the boundary box of the interpolator does not include the
location of the Poblet forests. In this case, the result of the interpolation is not reliable and should not
be used!

Exercise solution
Steps 16-17. Interpolating weather
Once we have this interpolator, obtaining interpolated weather for a set of target points is rather
straightforward using function interpolationpoints() from meteoland:

meteo <- interpolationpoints(exampleinterpolationdata, pobl_spt)

## Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): CRS projection of 'points'

## adapted to that of 'object'.

## Processing point '1' (1/1) -

## Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): Point '1' outside the boundary

## box of interpolation data object.

##  done.

Note that a warning was raised, because the boundary box of the interpolator does not include the
location of the Poblet forests. In this case, the result of the interpolation is not reliable and should not
be used!

The output of function interpolationpoints() is an object of S4 class
SpatialPointsMeteorology. We can access the weather data frame by subsetting the appropriate
element of slot data:

pobl_weather <- meteo@data[[1]]

head(pobl_weather, 2)

M.C. Escher - Babel tower, 1928

1.4 - Model inputs (exercise)
Miquel De Cáceres, Victor Granda, Aitor Ameztegui

Ecosystem Modelling Facility

2022-06-13
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3. Interpolate daily weather on the plot location
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Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
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Exercise setting
Objectives

1. Build forest objects from a tree data frame of forest inventory data
2. Retrieve soil physical properties from SoilGrids
3. Interpolate daily weather on the plot location

Data

Package medfateutils includes a data frame (poblet_trees), corresponding to forest inventory
data in a dense holm oak forest.

Location: Poblet (Catalonia, Spain); long/lat: 1.0219º, 41.3443º
Topography: elevation = 850 m, slope = 15.1º, aspect = 15º
Plot: Circular plot of 15-m radius
Tree data: Stem diameter measurements on two plots: control and managed.

As a result of the abandonment of former coppicing in the area, there is a high density of stems per
individual in the control plot.

The management involved a reduction of the number of stems per individual (sucker cutback or
selecció de tanys).
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You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")
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Exercise solution
Step 1. Loading packages
You may need to install medfateutils from GitHub:

devtools::install_github("emf-creaf/medfateutils")

We begin by loading packages medfate, medfateutils and meteoland

library(medfate)

library(medfateutils)

library(meteoland)

Step 2. Load and inspect Poblet data
Normally, tree data would be in a .csv or .xlsx file. Here, we simply load the tree data from Poblet
included in the package:

data("poblet_trees")



Exercise solution
Step 2. Load and inspect Poblet data
We can inspect its content, for example using:

summary(poblet_trees)

##   Plot.Code            Indv.Ref       Species           Diameter.cm   

##  Length:717         Min.   :  1.0   Length:717         Min.   : 7.50  

##  Class :character   1st Qu.: 45.0   Class :character   1st Qu.: 9.10  

##  Mode  :character   Median : 97.0   Mode  :character   Median :11.10  

##                     Mean   :103.4                      Mean   :11.62  

##                     3rd Qu.:156.0                      3rd Qu.:13.40  

##                     Max.   :261.0                      Max.   :26.00



Exercise solution
Step 2. Load and inspect Poblet data
We can inspect its content, for example using:

summary(poblet_trees)

##   Plot.Code            Indv.Ref       Species           Diameter.cm   

##  Length:717         Min.   :  1.0   Length:717         Min.   : 7.50  

##  Class :character   1st Qu.: 45.0   Class :character   1st Qu.: 9.10  

##  Mode  :character   Median : 97.0   Mode  :character   Median :11.10  

##                     Mean   :103.4                      Mean   :11.62  

##                     3rd Qu.:156.0                      3rd Qu.:13.40  

##                     Max.   :261.0                      Max.   :26.00

The data frame includes tree data corresponding to three forest inventories:

table(poblet_trees$Plot.Code)

## 

##     POBL_CTL POBL_THI_AFT POBL_THI_BEF 

##          267          189          261
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Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")
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We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

To fill data for element treeData in the forest object, we need to define a mapping from column
names in poblet_trees to variables in treeData. The mapping can be defined using a named
string vector, i.e. a vector where element names are variable names in treeData and vector
elements are strings of the variable names in poblet_trees:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm")

Note: Using "Species.name" = "Species" we indicate that the function should interpret values in
column Species as species names, not species codes.
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Step 3. Mapping trees from the control stand
We initialize an empty forest object using function emptyforest() from package medfate:

pobl_ctl <- emptyforest("POBL_CTL")

To fill data for element treeData in the forest object, we need to define a mapping from column
names in poblet_trees to variables in treeData. The mapping can be defined using a named
string vector, i.e. a vector where element names are variable names in treeData and vector
elements are strings of the variable names in poblet_trees:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm")

Note: Using "Species.name" = "Species" we indicate that the function should interpret values in
column Species as species names, not species codes.

We can now replace the empty treeData in pobl_ctl using functions subset() and
forest_mapTreeTable() from medfateutils:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"), 

                                         mapping_x = mapping, SpParams = SpParamsMED)
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Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)
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Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

One way to evaluate if the tree data is correctly specified is to display a summary of the forest
object using the summary() function defined in medfate for this object class:

summary(pobl_ctl, SpParamsMED)

## ID: POBL_CTL 

## Tree density (ind/ha): 267 

## Tree BA (m2/ha): 3.0179815 

## Cover (%) trees (open ground): 42.1205627  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 0.530447  trees: 0.530447  shrubs: 0 

## Live fine fuel (kg/m2) total: 0.1372838  trees: 0.1372838  shrubs: 0 

## PAR ground (%): NA  SWR ground (%): NA



Exercise solution
Step 4. Check the mapping result
We can inspect the result using:

summary(pobl_ctl$treeData)

One way to evaluate if the tree data is correctly specified is to display a summary of the forest
object using the summary() function defined in medfate for this object class:

summary(pobl_ctl, SpParamsMED)

## ID: POBL_CTL 

## Tree density (ind/ha): 267 

## Tree BA (m2/ha): 3.0179815 

## Cover (%) trees (open ground): 42.1205627  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 0.530447  trees: 0.530447  shrubs: 0 

## Live fine fuel (kg/m2) total: 0.1372838  trees: 0.1372838  shrubs: 0 

## PAR ground (%): NA  SWR ground (%): NA

Are the values of tree density, stand basal area and stand LAI acceptable for a dense oak forest?



Exercise solution
Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2
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Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

and use this information to map the tree data again, where we specify the parameter plot_size_x:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"), 

                                         mapping = mapping, SpParams = SpParamsMED, 

                                         plot_size_x = sampled_area)



Exercise solution
Step 5. Specifying plot size
We were told that forest stand sampling was done using a circular plot whose radius was 15 m. We
can calculate the sampled area using:

sampled_area = pi*15^2

and use this information to map the tree data again, where we specify the parameter plot_size_x:

pobl_ctl$treeData <- forest_mapTreeTable(subset(poblet_trees, Plot.Code=="POBL_CTL"), 

                                         mapping = mapping, SpParams = SpParamsMED, 

                                         plot_size_x = sampled_area)

We run again the summary and check whether stand's basal area and LAI make more sense:

summary(pobl_ctl, SpParamsMED)

## ID: POBL_CTL 

## Tree density (ind/ha): 3777.27731604765 

## Tree BA (m2/ha): 42.6957047 

## Cover (%) trees (open ground): 100  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 6.7141704  trees: 6.7141704  shrubs: 0 

## Live fine fuel (kg/m2) total: 1.7424533  trees: 1.7424533  shrubs: 0 

## PAR ground (%): NA  SWR ground (%): NA



Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.
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ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

##   512.9   566.9   628.3   638.0   692.7   976.5
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Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518
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##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

##   512.9   566.9   628.3   638.0   692.7   976.5

Once tree heights are defined, we can include them in our mapping vector:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm", "Height" = "Height.cm")



Exercise solution
Step 6. Adding tree heights
Another issue that we see is the summary() concerns percentage of PAR and SWR that reaches the
ground, which have missing values. This indicates that light extinction cannot be calculated, in our
case because tree heights are missing.

We should somehow estimate tree heights (in cm), for example using an allometric relationship:

poblet_trees$Height.cm = 100 * 1.806*poblet_trees$Diameter.cm^0.518

summary(poblet_trees$Height.cm)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

##   512.9   566.9   628.3   638.0   692.7   976.5

Once tree heights are defined, we can include them in our mapping vector:

mapping = c("Species.name" = "Species", "DBH" = "Diameter.cm", "Height" = "Height.cm")

and rerun the tree data mapping.



Exercise solution
Step 7. Mapping trees from the managed stand
Now we can address the managed stand, which has two codes corresponding to before and after the
thinning intervention. Let us first deal with the pre-thinning state:

pobl_thi_bef <- emptyforest("POBL_THI_BEF")

pobl_thi_bef$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_BEF"), 

                                             mapping_x = mapping, SpParams = SpParamsMED, 

                                             plot_size_x = sampled_area)

summary(pobl_thi_bef$treeData)

##     Species            N             Height           DBH          Z50            Z95         

##  Min.   :  4.0   Min.   :14.15   Min.   :512.9   Min.   : 7.50   Mode:logical   Mode:logical  

##  1st Qu.: 19.0   1st Qu.:14.15   1st Qu.:563.7   1st Qu.: 9.00   NA's:261       NA's:261      

##  Median :168.0   Median :14.15   Median :628.3   Median :11.10                                

##  Mean   :114.5   Mean   :14.15   Mean   :635.5   Mean   :11.51                                

##  3rd Qu.:168.0   3rd Qu.:14.15   3rd Qu.:681.9   3rd Qu.:13.00                                

##  Max.   :168.0   Max.   :14.15   Max.   :944.9   Max.   :24.40                                

##  NA's   :2

Beware of the missing values in column Species



Exercise solution
Step 8. Fixing species nomenclature
The Species variable contains two missing values. This will normally happen when some species
cannot be identified. We can verify if this happens for other parts of the Poblet tree data:

sum(!(poblet_trees$Species %in% SpParamsMED$Name))

## [1] 4

If we display species counts we can identify which species is not being parsed:

table(poblet_trees$Species)

## 

## Acer monspessulanum       Arbutus unedo Phillyrea latifolia     Quercus humilis        Quercus ilex 

##                   2                 265                   6                   4                 440

In this case, the name used for the downy oak (Quercus humilis) is a synonym and needs to be
replaced by its accepted name (Quercus pubescens), e.g.:

poblet_trees$Species[poblet_trees$Species=="Quercus humilis"] <- "Quercus pubescens"



Exercise solution
Step 8. Fixing species nomenclature
Now we repeat our mapping and check the results:

pobl_thi_bef$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_BEF"), 

                                             mapping_x = mapping, SpParams = SpParamsMED, 

                                             plot_size_x = sampled_area)

summary(pobl_thi_bef, SpParamsMED)

## ID: POBL_THI_BEF 

## Tree density (ind/ha): 3692.39467973197 

## Tree BA (m2/ha): 40.9224267 

## Cover (%) trees (open ground): 100  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 6.5530107  trees: 6.5530107  shrubs: 0 

## Live fine fuel (kg/m2) total: 1.6994566  trees: 1.6994566  shrubs: 0 

## PAR ground (%): 2.7210404  SWR ground (%): 6.9269881

Like the control plot, the summary() indicates a dense oak forest.



Exercise solution
Step 9. Mapping trees from the managed stand
We can finally map tree data for the forest plot after the thinning intervention:

pobl_thi_aft <- emptyforest("POBL_THI_AFT")

pobl_thi_aft$treeData <- forest_mapTreeTable(subset(poblet_trees,Plot.Code=="POBL_THI_AFT"), 

                                             mapping_x = mapping, SpParams = SpParamsMED, 

                                             plot_size_x = sampled_area)

summary(pobl_thi_aft, SpParamsMED)

## ID: POBL_THI_AFT 

## Tree density (ind/ha): 2673.80304394384 

## Tree BA (m2/ha): 31.6162035 

## Cover (%) trees (open ground): 100  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 5.0833939  trees: 5.0833939  shrubs: 0 

## Live fine fuel (kg/m2) total: 1.3224411  trees: 1.3224411  shrubs: 0 

## PAR ground (%): 6.1061933  SWR ground (%): 12.6058106

And check the reduction caused by the thinning.



Exercise solution
Step 10. Checking the number of cohorts
So far we have considered that each tree record should correspond to a woody cohort. We can check
the number of tree cohorts in each forest structure using:

nrow(pobl_ctl$treeData)

## [1] 267

nrow(pobl_thi_bef$treeData)

## [1] 261

nrow(pobl_thi_aft$treeData)

## [1] 189



Exercise solution
Step 10. Checking the number of cohorts
So far we have considered that each tree record should correspond to a woody cohort. We can check
the number of tree cohorts in each forest structure using:

nrow(pobl_ctl$treeData)

## [1] 267

nrow(pobl_thi_bef$treeData)

## [1] 261

nrow(pobl_thi_aft$treeData)

## [1] 189

This large amount of cohorts can slow done simulations considerably!



Exercise solution
Step 11. Reducing the number of cohorts
One way of reducing the number of cohorts is via function forest_mergeTrees() from package
medfate:

pobl_ctl <- forest_mergeTrees(pobl_ctl)

pobl_thi_bef <- forest_mergeTrees(pobl_thi_bef)

pobl_thi_aft <- forest_mergeTrees(pobl_thi_aft)

By default, the function will pool tree cohorts of the same species and diameter class (defined every 5
cm).



Exercise solution
Step 11. Reducing the number of cohorts
One way of reducing the number of cohorts is via function forest_mergeTrees() from package
medfate:

pobl_ctl <- forest_mergeTrees(pobl_ctl)

pobl_thi_bef <- forest_mergeTrees(pobl_thi_bef)

pobl_thi_aft <- forest_mergeTrees(pobl_thi_aft)

By default, the function will pool tree cohorts of the same species and diameter class (defined every 5
cm).

We can check the new number of tree cohorts using again:

nrow(pobl_ctl$treeData)

## [1] 9

nrow(pobl_thi_bef$treeData)

## [1] 11

nrow(pobl_thi_aft$treeData)

## [1] 8



Exercise solution
Step 11. Reducing the number of cohorts
We can check whether stand properties were altered using the summary() function:

summary(pobl_thi_aft, SpParamsMED)

## ID: POBL_THI_AFT 

## Tree density (ind/ha): 2673.80304394384 

## Tree BA (m2/ha): 31.6162035 

## Cover (%) trees (open ground): 100  shrubs: 0 

## Shrub crown phytovolume (m3/m2): 0 

## LAI (m2/m2) total: 5.1144373  trees: 5.1144373  shrubs: 0 

## Live fine fuel (kg/m2) total: 1.3298915  trees: 1.3298915  shrubs: 0 

## PAR ground (%): 6.0028221  SWR ground (%): 12.4473851

Function forest_mergeTrees() will preserve the stand density and basal area that the stand
description had before merging cohorts. Other properties like leaf area index may be slightly
modified.

Tip: It is advisable to reduce the number of woody cohorts before running simulation models in
medfate.



Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.
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package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))
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pobl_soil_props <- soilgridsParams(coords_sp, widths = c(300, 700, 1000))



Exercise solution
Steps 12-13. Retrieving SoilGrids data
Retrieval of soil properties from SoilGrids can be done using function soilgridsParams() from
package medfateutils.

Assuming we know the plot coordinates, we first create an object SpatialPoints (see package sp):

cc = cbind(1.0219, 41.3443)

coords_sp <- SpatialPoints(cc, CRS(SRS_string = "EPSG:4326"))

This object can be used to query SoilGrids using soilgridsParams():

pobl_soil_props <- soilgridsParams(coords_sp, widths = c(300, 700, 1000))

This function returns a data frame of soil properties:

pobl_soil_props

##   widths     clay     sand       om       bd  rfc

## 1    300 26.43333 31.06667 4.133333 1.166667 18.0

## 2    700 30.40000 29.75000 0.900000 1.440000 19.2

## 3   1000 31.60000 29.60000 0.610000 1.500000 20.9



Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).
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Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

SoilGrids usually underestimates the amount of rocks in the soil, because soil samples do not normally
contain large stones or blocks. Realistic simulations should reduce the soil water holding capacity by
increasing rfc. For example, here we will assume that the third layer contains 80% of rocks:

pobl_soil_props$rfc[3] = 80



Exercise solution
Steps 14-15. Building the soil object
This data frame is a physical description of the soil. Remember that the soil data structure for
medfate simulations is built using function soil():

pobl_soil <- soil(pobl_soil_props)

We can inspect the soil definition using print() (or writing pobl_soil in the console).

SoilGrids usually underestimates the amount of rocks in the soil, because soil samples do not normally
contain large stones or blocks. Realistic simulations should reduce the soil water holding capacity by
increasing rfc. For example, here we will assume that the third layer contains 80% of rocks:

pobl_soil_props$rfc[3] = 80

If we rebuild the soil object and inspect its properties...

pobl_soil <- soil(pobl_soil_props)

pobl_soil

...we will see the decrease in water-holding capacity.



Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.



Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

                                    elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

## Object of class SpatialPointsTopography

##         coordinates elevation slope aspect

## 1 (1.0219, 41.3443)       850  15.1     15
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Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

                                    elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

## Object of class SpatialPointsTopography

##         coordinates elevation slope aspect

## 1 (1.0219, 41.3443)       850  15.1     15

The more difficult part of using package meteoland is to assemble weather data from surface
weather stations into an object of class MeteorologyInterpolationData.



Exercise solution
Steps 16-17. Interpolating weather
Obtaining daily weather data suitable for simulations is not straightforward either. Here we
illustrate one way of obtaining such data with package meteoland.

We begin by building an object of S4 class SpatialPointsTopography, which extends
SpatialPointsand contains both the coordinates of our site as well as topographic variables.

pobl_spt <- SpatialPointsTopography(coords_sp,

                                    elevation = 850, slope = 15.1, aspect = 15)

pobl_spt

## Object of class SpatialPointsTopography

##         coordinates elevation slope aspect

## 1 (1.0219, 41.3443)       850  15.1     15

The more difficult part of using package meteoland is to assemble weather data from surface
weather stations into an object of class MeteorologyInterpolationData.

Here we will assume that such an object is already available, by using the example object provided in
the meteoland package.

data("exampleinterpolationdata")



Exercise solution
Steps 16-17. Interpolating weather
Once we have this interpolator, obtaining interpolated weather for a set of target points is rather
straightforward using function interpolationpoints() from meteoland:

meteo <- interpolationpoints(exampleinterpolationdata, pobl_spt)

## Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): CRS projection of 'points'

## adapted to that of 'object'.

## Processing point '1' (1/1) -

## Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): Point '1' outside the boundary

## box of interpolation data object.

##  done.

Note that a warning was raised, because the boundary box of the interpolator does not include the
location of the Poblet forests. In this case, the result of the interpolation is not reliable and should not
be used!



Exercise solution
Steps 16-17. Interpolating weather
Once we have this interpolator, obtaining interpolated weather for a set of target points is rather
straightforward using function interpolationpoints() from meteoland:

meteo <- interpolationpoints(exampleinterpolationdata, pobl_spt)

## Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): CRS projection of 'points'

## adapted to that of 'object'.

## Processing point '1' (1/1) -

## Warning in interpolationpoints(exampleinterpolationdata, pobl_spt): Point '1' outside the boundary

## box of interpolation data object.

##  done.

Note that a warning was raised, because the boundary box of the interpolator does not include the
location of the Poblet forests. In this case, the result of the interpolation is not reliable and should not
be used!

The output of function interpolationpoints() is an object of S4 class
SpatialPointsMeteorology. We can access the weather data frame by subsetting the appropriate
element of slot data:

pobl_weather <- meteo@data[[1]]

head(pobl_weather, 2)
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