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Abstract. Regional-level applications of dynamic vegetation
models are challenging because they need to accommodate
the variation in plant functional diversity, which requires
moving away from broadly defined functional types. Differ-
ent approaches have been adopted in the last years to incor-
porate a trait-based perspective into modeling exercises. A
common parametrization strategy involves using trait data to
represent functional variation between individuals while dis-
carding taxonomic identity. However, this strategy ignores
the phylogenetic signal of trait variation and cannot be em-
ployed when predictions for specific taxa are needed, such
as in applications to inform forest management planning. An
alternative strategy involves adapting the taxonomic resolu-
tion of model entities to that of the data source employed for
large-scale initialization and estimating functional parame-
ters from available plant trait databases, adopting diverse so-
lutions for missing data and non-observable parameters. Here

we report the advantages and limitations of this second strat-
egy according to our experience in the development of MED-
FATE (version 2.9.3), a novel cohort-based and trait-enabled
model of forest dynamics, for its application over a region
in the western Mediterranean Basin. First, 217 taxonomic
entities were defined according to woody species codes of
the Spanish National Forest Inventory. While forest inven-
tory records were used to obtain some empirical parameter
estimates, a large proportion of physiological, morphologi-
cal, and anatomical parameters were matched to measured
plant traits, with estimates extracted from multiple databases
and averaged at the required taxonomic level. Estimates for
non-observable key parameters were obtained using meta-
modeling and calibration exercises. Missing values were ad-
dressed using imputation procedures based on trait covaria-
tion, taxonomic averages or both. The model properly sim-
ulated observed historical changes in basal area, with a per-
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formance similar to an empirical model trained for the same
region. While strong efforts are still required to parameter-
ize trait-enabled models for multiple taxa, and to incorporate
intra-specific trait variability, estimation procedures such as
those presented here can be progressively refined, transferred
to other regions or models and iterated following data source
changes by employing automated workflows. We advocate
for the adoption of trait-enabled and population-structured
models for regional-level projections of forest function and
dynamics.

1 Introduction

Dynamic vegetation models are essential tools to anticipate
future function and dynamics of terrestrial ecosystems. How-
ever, forest responses to changes in climate and disturbance
regimes are complex and non-linear, as they involve multi-
ple processes operating at various scales, which makes fore-
casting a challenging task (Adams et al., 2013). Global-scale
assessments of the effects of climatic changes on terres-
trial ecosystems and their feedbacks require physically based
mechanistic approaches, given the need to evaluate energy,
water and carbon exchanges between the biosphere and the
atmosphere (Prentice and Cowling, 2013). At the regional
scale, however, the assessment of climate change impacts
on forest function and dynamics often do not include feed-
backs to the atmosphere system. Thus, at this scale a much
broader range of modeling approaches can be used, differing
in the way vegetation structure is represented and including
different degrees of mechanistic detail of process represen-
tation (Bugmann and Seidl, 2022; Maréchaux et al., 2021;
Blanco et al., 2020; Mahnken et al., 2022). Some models are
very detailed in terms of biophysical, biogeochemical and
physiological processes, but they have a missing or limited
representation of vegetation structure and demographic pro-
cesses (Running and Coughlan, 1988; Dufrêne et al., 2005;
Gracia et al., 2004). These models are better suited for pre-
dicting vegetation function than structural and/or composi-
tional forest dynamics. At the opposite end, growth and yield
models calibrated using empirical individual data allow sim-
ulating forest structural and compositional dynamics arising
from the birth, growth and death of tree individuals (Dixon,
2013; Stadelmann et al., 2019; Trasobares et al., 2022), but
they are unable to project vegetation function properly and
are often not suited to simulate unprecedented environmen-
tal conditions, such as increased atmospheric [CO2]. Forest
gap models combine an individual- or cohort-based repre-
sentation of vegetation with an intermediate level of mecha-
nistic detail. In such models, demographic processes depend
on competition for light, water and nutrients, but the impact
of these factors on demographic processes is modeled with
a low degree of mechanistic detail (Bugmann, 2001; Morin
et al., 2021; Thrippleton et al., 2020; García-Valdés et al.,

2020). Finally, hybrid models exist that combine a detailed
mechanistic approach to energy, water and carbon balances
with the ability to represent vegetation structure and simu-
late demographic processes (Fisher et al., 2018; Maréchaux
and Chave, 2017; Liu et al., 2021). These kinds of models
have the advantage of allowing a good representation of the
interaction between vegetation function and dynamics, often
at the cost of increased parametrization complexity and com-
putational requirements.

Regardless of model type, one of the common chal-
lenges when modeling forest function and dynamics at large
scales is to appropriately represent plant functional diver-
sity (Maréchaux and Chave, 2017), as functional traits dis-
play a wide spectrum of variation at multiple spatial scales
(Funk et al., 2017). First, not all vegetation models are “trait-
enabled”, in the sense that their parameters can be con-
ceptually and quantitatively matched to measurable plant
traits. Second, it is common in many models to reduce
functional diversity into a manageable set of dominant tree
species or a lumped set of plant functional types (Vander-
wel et al., 2013; Morin et al., 2021; Prentice and Cowl-
ing, 2013; Dufrêne et al., 2005), with the corresponding de-
crease in ecological realism. However, including functional
trait variation has been proven to substantially impact sim-
ulation outcomes (Verheijen et al., 2015) and comprehen-
sive global trait databases represent a key source of infor-
mation to boost parameter estimation (Kattge et al., 2020).
Different strategies have been adopted to incorporate plant
functional diversity into vegetation modeling exercises (Za-
kharova et al., 2019; Berzaghi et al., 2020). One possibil-
ity is to sample individual-level trait values from the distri-
bution observed in a given forest area (Fyllas et al., 2014).
This stochastic sampling of trait combinations can preserve
trait covariation and relies on competition processes imple-
mented in the model to filter trait distributions in each simu-
lated patch (Sakschewski et al., 2015; Thonicke et al., 2020;
Pavlick et al., 2013). Another approach consists of com-
bining a trait-based description of individuals with genetic
and demographic processes included in the model to simu-
late trait inheritance and, hence, eco-evolutionary processes
(Scheiter et al., 2013; Scheiter and Higgins, 2009). For sim-
ulations over large spatial extents, yet another possibility is
to use climate–trait relationships, calibrated using global trait
databases, to prescribe the variation across space of parame-
ter values (Verheijen et al., 2013, 2015). All these approaches
focus on representing the continuum of traits at the individual
level, either ignoring plant taxonomy for parametrization, or
using broadly defined functional types. Even though models
implementing these approaches are valuable tools, disregard-
ing the information provided by species taxonomic identity
entails some trade-offs. Importantly, many plant traits ex-
hibit a phylogenetic signal (Sanchez-Martinez et al., 2020;
Anderegg et al., 2022) and trait covariation frequently dif-
fers within and among species (Rosas et al., 2019; Anderegg
et al., 2018). Hence, it is unclear how a model without ex-
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plicit taxonomic entities can deal with functional diversity in
a realistic way, which explains why recent approaches sam-
ple parameter combinations within species-defined bound-
aries (Buotte et al., 2021). In addition, there are many appli-
cations at local to regional scales that require species iden-
tity. An example would be the evaluation of future climatic
and socioeconomic scenarios for forest management plan-
ning or biodiversity conservation purposes (Morán-Ordóñez
et al., 2020; Augustynczik et al., 2020).

Accounting for taxonomy in trait-enabled model simu-
lations requires using as many trait data sources as possi-
ble to obtain taxon-specific estimates of model parameters
(Maréchaux and Chave, 2017; Schmitt et al., 2020; Morin
et al., 2021; Ruffault et al., 2022). While not solving the is-
sue of intra-specific trait variability, a taxon-based parame-
ter estimation strategy can be employed for large-scale sim-
ulation exercises in combination with systematic forest in-
ventory data, the latter defining the maximum resolution of
taxonomic entities (Vanderwel et al., 2013; Caspersen et al.,
2011; Dijak et al., 2017; Morin et al., 2021). To date, how-
ever, there are few examples of trait-enabled models of vege-
tation dynamics including parameterization for a large num-
ber of taxa based on plant trait databases (Christoffersen
et al., 2016). Hence, it is important to appropriately exam-
ine the different challenges to address if this approach is
adopted because, even with the current wealth of plant trait
data sources, information is still insufficient for less com-
mon species that have not received much attention and for
key model parameters that are difficult to measure or cannot
be matched to any observable trait.

The main objectives of this manuscript are as follows:
(1) to present MEDFATE (version 2.9.3), a cohort-based and
trait-enabled model of forest function and dynamics designed
for regional-scale applications, and (2) to illustrate the chal-
lenges encountered in the process of estimating parameter
values for multiple taxa in trait-enabled models and provide
suggestions to address them. We begin by describing the de-
sign and formulation of MEDFATE, which evolved from two
preceding models (De Cáceres et al., 2015, 2021) that now
constitute alternative sub-models for transpiration and photo-
synthesis processes. We then detail the different procedures
we adopted to estimate taxon parameter values for the ap-
plication of MEDFATE over a target region in the Mediter-
ranean Basin, including the imputation procedures used to
address missing values. Once fully parameterized, we eval-
uate the model in terms of predicted forest dynamics at the
regional level and compare its performance with that of an
empirical model (García-Callejas et al., 2017), recently cali-
brated for the main species in the same target region. We then
illustrate the potential of MEDFATE to assess the impact of
expected climate changes on forest function and dynamics
in the target region. Finally, we discuss the challenges that
we encountered, the transferability of the adopted parameter
estimation procedures and the overall value of trait-enabled
forest models for regional-scale applications.

2 Model description

MEDFATE simulates energy, water and carbon balances and
ultimately forest dynamics for a set of woody plants (i.e.,
trees or shrubs) in a given forest stand using daily weather
data as input. The above- and below-ground vertical structure
of the stand is explicitly represented, but the spatial location
of plants within the stand is not considered. Importantly, the
model is cohort-based, meaning that plants considered simi-
lar (e.g., in size and taxonomic identity) are represented using
a single entity with average characteristics (e.g., tree height
and diameter, or shrub height), and a cohort density variable
(i.e., individuals per hectare) is used to upscale quantities
from the individual to the cohort level. Figure 1 summarizes
the main processes in the model. Most of the processes in-
volved in water and energy balances are implemented at the
stand level, whereas transpiration, photosynthesis, mortality
and recruitment are implemented at the cohort level. Labile
carbon balance, structural growth and senescence are imple-
mented at the individual level. Hydrological processes (i.e.,
rainfall interception, soil infiltration, percolation and evapo-
ration from bare soil) were already described in De Cáceres
et al. (2015). MEDFATE can be run using two different lev-
els of complexity, depending on the sub-model employed to
estimate plant transpiration and photosynthesis (De Cáceres
et al., 2015, 2021), hereafter referred to as the “basic” and
“advanced” sub-models (Fig. 1). Although the basic sub-
model is limited in its assumptions and includes key param-
eters that cannot be matched to plant traits, the finer detail
in process representation of the advanced sub-model eas-
ily leads to computational limitations when processing thou-
sands of stands. Section 2.1 and 2.2 briefly describe the de-
sign of the two sub-models. Design and formulation of the
carbon balance, growth, mortality and recruitment processes
are described with more detail (Sect. 2.3 to 2.5), because they
are newly introduced in the model version presented here.
Table 1 includes a description of all symbols mentioned in
the text. MEDFATE has been coded in C++ and linked to
a R user interface (R Core Team, 2023). The model is im-
plemented in a modular way, so that different R functions
can be used to execute different sub-models (Fig. 1). An ex-
tended model description, including process formulation, can
be found at https://emf-creaf.github.io/medfatebook/ (last ac-
cess: 30 May 2023).

2.1 Transpiration, photosynthesis and drought impacts
in the basic sub-model

The basic sub-model of MEDFATE was first described in
De Cáceres et al. (2015) but has recently undergone mod-
ifications that are detailed in Appendix B1. All sub-model
processes are represented at daily time steps. Extinction
of shortwave radiation and photosynthetically active radia-
tion through the canopy follows Beer–Lambert’s equation.
The model first derives a separate estimate of whole-stand
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Table 1. Description and units of input variables, state variables, and model parameters mentioned in the text and Appendix B. Column
“sub-model” indicates when a given state variable or parameter is specific to one of the two transpiration/photosynthesis sub-models. A
complete list of model parameter definitions and units is given in Table S1 in the Supplement.

Symbol Description Units/range Sub-model

LAI Leaf area index of the stand m2 m−2

BA Total basal area of the stand m2 ha−1

H Height of an “average” individual m

SA Sapwood area of an “average” individual cm2

DBH Diameter at breast height for an “average” individual cm

FRBs Fine-root biomass in soil layer s g dry

PET Potential evapo-transpiration according to Penman (1948) mm

T Air temperature ◦C

Ts Temperature of soil layer s ◦C

FPARi Fraction of photosynthetically active radiation (PAR) for cohort i [0–1]

[CO2] Air carbon dioxide concentration ppm

VPD Vapor pressure deficit kPa

Emax,stand Maximum daily stand transpiration Lm−2 basic

Emax,stand(i) Maximum daily stand transpiration according to species of cohort i Lm−2 d−1 basic

aTmax, bTmax Species-specific parameters relating LAI with the ratio Emax,stand(i)/PET basic

Emax,i Maximum daily transpiration for plant cohort i Lm−2 d−1 basic

Ei Actual daily transpiration for plant cohort i Lm−2 d−1

Ag,i Daily gross photosynthesis of plant cohort i gCm−2 d−1

NPP Annual net primary production gCm−2 yr−1

9extract Soil water potential corresponding to 50 % of maximum plant transpiration MPa basic

cextract Parameter of the Weibull function regulating the decrease of transpiration basic

9plant Plant water potential MPa basic

9leaf Leaf water potential MPa advanced

9stem Stem water potential MPa advanced

9s Water potential in soil layer s MPa

PLC Proportion of stem xylem conductance lost due to cavitation [0–1]

WUEmax Water use efficiency assuming no light, water or CO2 limitations gCL−1 basic

WUEPAR,
WUECO2 ,
WUEVPD

Coefficients regulating the dependency of WUE on light availability, CO2 concentration and VPD basic

rcell (9, T ) Relative cell expansion rate, depending on water potential (9) and temperature (T )

rcellmax Maximum relative cell expansion rate (at T = 30 ◦C and 9 = 0)

RERsapwood Sapwood (parenchyma) maintenance cost per dry mass unit ggluc g dry−1 d−1

RGRleafmax Maximum daily leaf area growth rate per unit sapwood area m2 cm−2 d−1

RGRcambiummax Maximum daily (tree) sapwood area growth rate per unit cambium length cm2 cm−1 d−1

RGRsapwoodmax Maximum daily (shrub) sapwood area growth rate per unit sapwood area cm2 cm−2 d−1

RGRfinerootmax Maximum daily fine-root biomass relative growth rate g dry g dry−1 d−1

SRsapwood Daily relative rate of sapwood area senescence at 25 ◦C cm2 cm−2 d−1

SRfineroot Daily relative rate of fine root biomass senescence at 25 ◦C g dry g dry−1 d−1

1LAgrowth Daily leaf area increase due to growth m2 d−1

1SAgrowth Daily sapwood area increase due to growth cm2 d−1

1SAsenescence Daily sapwood area decrease due to senescence cm2 d−1

1FRBgrowth,s Daily increase in fine-root biomass in soil layer s due to growth g dry d−1

1FRBsenescence,s Daily decrease in fine-root biomass in soil layer s due to senescence g dry d−1

RSSG Minimum relative storage for sapwood growth [0–1]
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Figure 1. MEDFATE (version 2.9.3) model processes (a–c), with their temporal resolution, and user-level R simulation functions (d), with
the extension of the corresponding bars indicating the set of processes included.

maximum transpiration – i.e., before accounting for soil
water deficit – for each taxon, which accounts for atmo-
spheric evaporative demand and requires two taxon-specific
parameters (see Eq. B2). Actual cohort transpiration de-
pends on stand’s maximum transpiration calculated for the
corresponding taxon and the fraction of shortwave radia-
tion absorbed by the plant cohort (Korol et al., 1995). It
also depends on the vertical distribution of fine roots, soil
moisture profile and two taxon-specific parameters, 9extract
and cextract, namely the soil water potential corresponding
to 50 % of maximum transpiration and the slope of a Weibull
function regulating the steepness of transpiration decrease,
respectively (De Cáceres et al., 2015) (see Eq. B3). The sub-
model also simulates hydraulic redistribution of water among
soil layers via circulation through plant roots (Neumann and
Cardon, 2012). The basic sub-model assumes a linear re-
lationship between plant transpiration and gross photosyn-
thesis, but it accounts for the dependency of water use effi-

ciency on the fraction of photosynthetically active radiation,
air CO2 concentration and vapor pressure deficit. Overall,
the estimation of gross photosynthesis requires four taxon-
specific parameters (see Eq. B4). Plant water status is repre-
sented by a plant water potential, 9plant, defined as an “av-
erage” of soil water potential in the rhizosphere. The sub-
model keeps track of drought legacies using the proportion
of hydraulic conductance lost due to stem cavitation, PLC.
Increases in PLC occur whenever 9plant decreases, follow-
ing a xylem vulnerability curve. PLC limits actual transpira-
tion rates and does not decrease following increases in9plant.
Cavitation effects can only be reversed (i.e., PLC decreased)
via new sapwood formation (Choat et al., 2018).
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2.2 Transpiration, photosynthesis and drought impacts
in the advanced sub-model

The advanced sub-model simulates radiation balance,
canopy, soil and leaf energy balances, plant hydraulics, stom-
atal regulation, and photosynthesis at hourly time steps. We
provide a brief description here, but a more detailed descrip-
tion can be found in De Cáceres et al. (2021). Radiation bal-
ance and sunlit/shade leaf energy balance are estimated as-
suming a multi-layer canopy (Anten and Bastiaans, 2016),
but canopy energy balance equations are evaluated assum-
ing a single layer that exchanges energy with the atmosphere
and the soil (Best et al., 2011). The “supply function” ap-
proach of Sperry and Love (2015) is used to model the rela-
tionship between steady-state instantaneous water flow and
water status along the soil–plant–atmosphere hydraulic net-
work, which includes rhizosphere, root, stem and leaf seg-
ments (Sperry et al., 1998). The advanced sub-model, thus,
requires parameters describing maximum hydraulic conduc-
tance and hydraulic vulnerability curves for these three plant
segments. Gross photosynthesis is approximated following
the sunlit/shade model of De Pury and Farquhar (1997),
which requires estimates for the usual photosynthetic param-
eters. Namely, the maximum RuBisCO carboxylation rate
and the maximum electron transport rate, which are con-
sidered taxon-specific, are dependent on leaf temperature.
Stomatal regulation follows the “profit maximization” ap-
proach of Sperry et al. (2017), where an optimum stomatal
conductance is determined by comparing the risks associated
with hydraulic damage against photosynthetic gains, sub-
ject to the limits imposed by minimum and maximum stom-
atal conductance. Hydraulic redistribution of soil water is an
emergent outcome in the advanced sub-model, derived from
its formulation of plant hydraulics. Like the basic sub-model,
the advanced sub-model keeps track of drought legacy effects
through their cumulative effects on stem PLC, which feeds
back on stem vulnerability curves and, hence, transpiration
rates. As in the basic sub-model, its effects are only reversed
via new sapwood area growth.

2.3 C pools and labile C balance

Three different carbon compartments are represented in
MEDFATE: leaves, sapwood – including stem, branches and
coarse roots – and fine roots. We differentiate two main forms
of C pools: structural and labile. Structural C corresponds to
membranes, walls and the cytosolic organelles of living cells,
whereas labile C occurs in leaves and sapwood compart-
ments only, and it is divided between metabolic and storage
(Richardson et al., 2013; Dietze et al., 2014). Metabolic C
is assumed to correspond to dissolved sugars (e.g., glucose
or fructose) that are used to directly sustain cell functioning,
whereas storage C is assumed to correspond to starch. We
chose this design because structural growth and photosyn-
thesis are frequently uncoupled (Dietze et al., 2014; Fatichi

et al., 2014; Cabon et al., 2022), which points to the need of
including storage compartments when modeling tree growth
at daily to seasonal resolution (Richardson et al., 2013; Jones
et al., 2020).

Initial values of leaf structural C are obtained by divid-
ing leaf area by specific leaf area, whereas sapwood struc-
tural C depends on sapwood area, plant height, coarse root
length and wood density. Finally, fine-root structural C is es-
timated assuming a constant relationship between leaf area
and fine-root area. Leaf and sapwood C storage capacity is
determined by tissue volume and density, assuming that a
maximum of 50 % of cell volume is available for starch ac-
cumulation. Sapwood storage constitutes the largest C pool,
depending on sapwood volume and the fraction of sapwood
corresponding to xylem parenchyma.

The balance of leaf labile C includes gross photosynthesis,
leaf maintenance respiration, sugar–starch conversion and
phloem transport processes. Sapwood labile C balance in-
cludes phloem transport, sugar–starch conversion, mainte-
nance respiration of sapwood and fine roots, growth costs,
senescence and root exudation. Sapwood maintenance ap-
plies to the xylem parenchyma only, because dead xylem
conduits are assumed to be inexpensive. Maintenance res-
piration rates per dry mass unit are estimated from tis-
sue nitrogen content in the case of leaf and fine-root com-
partments (Reich et al., 2008), but not for sapwood be-
cause of the lower knowledge in the factors affecting wood
respiration, which results in a species-specific parameter
(RERsapwood) to be calibrated. Maintenance respiration is
temperature-dependent and is subtracted from metabolic
C pools, whereas C used for growth is withdrawn from the
sapwood storage C pool. Storage accumulation is consid-
ered a passive consequence of sugar–starch dynamics and
reduced C use by other sinks (Palacio et al., 2014; Le Roux
et al., 2001). Sugar–starch dynamics are modeled to main-
tain a constant metabolic C concentration in leaves and
sapwood tissues, whereas phloem transport decreases leaf-
versus-sapwood differences in sugar concentration. Root ex-
udation is not modeled as an active process competing for
metabolic C, but as a consequence of plant C storage capac-
ity being surpassed (Prescott et al., 2020; but see Williams
and de Vries, 2020), which can happen when temperature
or plant water status limits growth more than photosynthe-
sis. During leaf senescence, labile C pools are recycled and
relocated to sapwood storage. Analogously, when sapwood
is converted into heartwood, labile C in the protoplasm of
parenchyma cells is assumed to be re-absorbed by neighbor-
ing living cells as storage.

2.4 Growth and senescence

In many mechanistic dynamic vegetation models, structural
growth is proportional to the amount of C fixed by photo-
synthesis or is determined by the difference between photo-
synthesis and respiration (Körner, 2015; Fatichi et al., 2019).

Geosci. Model Dev., 16, 3165–3201, 2023 https://doi.org/10.5194/gmd-16-3165-2023



M. De Cáceres et al.: MEDFATE 2.9.3: a trait-enabled model for Mediterranean forests 3171

Following the C sink limitation hypothesis, which posits that
for trees growing under environmental constraints direct re-
strictions on tissue formation can occur before any C short-
age comes into play (Körner, 2003), formation of new plant
tissues in MEDFATE also considers biophysical constraints
on plant tissue expansion (Schiestl-Aalto et al., 2015; Lem-
pereur et al., 2015; Hayat et al., 2017; Potkay et al., 2022;
Eckes-Shephard et al., 2021). Specifically, temperature and
turgor limitations on cell expansion are implemented follow-
ing Cabon et al. (2020a, b), although these authors developed
their approach for tracheid production/enlargement and we
apply it to model growth of all kinds of plant tissues.

A leaf phenology sub-model controls the duration of
phenophases corresponding to budburst, leaf development
and senescence (Chuine et al., 2013; Delpierre et al., 2009).
During bud formation periods, the model updates the maxi-
mum leaf area that can be achieved, as the product of current
sapwood area and a target leaf area to sapwood area ratio,
following the pipe model (Shinozaki et al., 1964). Assuming
no allocation or C limitations, daily leaf area increase due to
growth is estimated using the following:

1LAgrowth = SA ·RGRleafmax ·
rcell(9leaf,T )

rcellmax
, (1)

where RGRleafmax is the maximum leaf area growth rate per
unit sapwood area, rcell is the relative cell expansion rate, de-
pending on leaf water potential (9leaf) and temperature (T )
(Cabon et al., 2020a), and rcellmax is a reference cell expan-
sion rate at T = 30 ◦C and 9leaf= 0. Leaf senescence oc-
curs due to leaf aging in evergreen species, programmed leaf
senescence in deciduous species or as defoliation triggered
by cavitation (i.e., following increases in PLC).

The maximum fine-root biomass that a given individual
can have depends on its leaf area target, the root area to
leaf area ratio and specific root surface area. Thus, fine-root
biomass is constrained by allocation parameters in a simi-
lar way as leaf area. Assuming no allocation or C limita-
tions, daily fine-root biomass increment in a given soil layer s
(1FRBgrowth,s) is modeled analogously to Eq. (1):

1FRBgrowth,s = FRBs ·RGRfinerootmax ·
rcell(9s,Ts)

rcellmax
, (2)

where FRBs is the current fine-root biomass in layer s,
RGRfinerootmax is the maximum relative growth rate for fine
roots, and rcell depends here on the water potential (9s) and
temperature (Ts) in soil layer s. Fine-root senescence is esti-
mated assuming a linear temperature dependence:

1FRBsenescence,s = FRBs ·SRfineroot ·
max(Ts− 5,0)

20
, (3)

where SRfineroot is the daily relative rate of fine-root senes-
cence at 25 ◦C.

Unlike leaves and fine roots, formation of new sapwood
area is not constrained by allocation parameters. On the con-
trary, sapwood growth and senescence are the processes that

constrain the target biomass of the other organs. This lack
of an explicit allocation rule does not imply continuous sap-
wood growth, because it is regulated by temperature/tur-
gor limitations and two additional constraints: first, forma-
tion of sapwood area can only occur if unfolded leaves are
present, assuming that hormonal signals controlling cam-
bium division and sapwood development are mainly synthe-
sized within leaves. Second, sapwood formation does not oc-
cur if C storage levels are below a given threshold, so that
the maintenance of metabolic functioning and replacement
of leaves/fine roots are prioritized over plant growth when-
ever C storage levels are low (Martínez-Vilalta et al., 2016),
helping to maintain a safety margin against the risk of car-
bon starvation (Huang et al., 2019). This threshold is speci-
fied in relative terms via species parameter RSSG, the min-
imum relative starch for sapwood growth. When the former
two constraints do not operate, daily sapwood area increases
(1SAgrowth) are modeled analogously to the other tissues:

1SAgrowth = π ·DBH ·RGRcambiummax

×
rcell(9stem,T )

rcellmax
for tree cohorts, and (4a)

1SAgrowth = SA ·RGRsapwoodmax

×
rcell(9stem,T )

rcellmax
for shrub cohorts, (4b)

where DBH is the current diameter at breast height (for
a tree cohort), SA is the current sapwood area (for a
shrub cohort), rcell now depends on stem water poten-
tial (9stem) and temperature (T ), RGRcambiummax is the max-
imum growth rate relative to the current cambium perimeter
and RGRsapwoodmax is the maximum growth rate relative to
the current area of sapwood (note that diameter is not avail-
able in multi-stemmed shrubs). Unlike other models where
height-to-diameter variations arise from an explicit regula-
tion of the activity of apical and lateral (i.e., cambium) meris-
tems (e.g., Hayat et al., 2017), in MEDFATE tree height in-
creases are estimated as a function of diameter increases and
a height-to-diameter ratio varying with FPAR (Rasche et al.,
2012).

Sapwood area senescence (i.e., conversion to heartwood)
is assumed to occur with aging, although evidence points
towards a plant-controlled developmental process (Spicer,
2005). Most process-based forest models assume a fixed rate
of sapwood turnover (Collalti et al., 2020). Like in Eq. (3),
we assume that the rate of conversion to heartwood is faster
under warmer conditions and, similarly to 3PG (Landsberg
and Waring, 1997), that the relative turnover rate of sapwood
is smallest for young plants, and it progressively increases
with size:

1SAsenescence = SA ·
SRsapwood

1+ 15 · e−H
·

max(T − 5,0)
20

, (5)

where SRsapwood is the daily rate of sapwood conversion to
heartwood at 25 ◦C and H is plant height (m).

https://doi.org/10.5194/gmd-16-3165-2023 Geosci. Model Dev., 16, 3165–3201, 2023



3172 M. De Cáceres et al.: MEDFATE 2.9.3: a trait-enabled model for Mediterranean forests

When using the advanced sub-model, leaf, stem and soil
water balances provide the water status for Eqs. (1)–(5),
while the soil and canopy energy balances provide tem-
perature values. Leaf and sapwood area changes feed back
on maximum stem hydraulic conductance, and fine-root
biomass changes feed back on rhizosphere conductance.
Moreover, recovery from stem embolism is assumed to be the
result of new xylem formation (Choat et al., 2018; Rehschuh
et al., 2020). Specifically, formation of new sapwood re-
duces the proportion of conductance loss (PLC) between
time steps t and t + 1:

PLCt+1 =max
[

PLCt −
1SAgrowth

SA
,0
]
. (6)

When using the basic sub-model, it is assumed that Ts =

T and 9s =9stem =9leaf =9plant. In this case, changes in
sapwood area affect maximum transpiration rates per unit of
leaf area via reduction of PLC only.

2.5 Mortality and recruitment

Dynamic vegetation models implement mortality in very dif-
ferent ways, from purely empirical to entirely mechanistic
approaches (Hawkes, 2000; Keane et al., 2001; Bugmann
et al., 2019). In MEDFATE, woody plants are assumed to
die at a constant basal rate due to processes not explicitly
included in the model (e.g., biotic attacks or windstorms),
but mortality rates increase whenever physiological stress
thresholds presumed to lead to plant mortality are surpassed
(McDowell et al., 2022). The model allows plants to die
explicitly from either starvation (if metabolic carbon is ex-
hausted) or desiccation (extreme tissue dehydration) (Mc-
Dowell et al., 2008, 2011). Starvation is assumed to occur
whenever the size of the sapwood metabolic C pool decreases
below 30 % of its maximum value (Martínez-Vilalta et al.,
2016). Plant desiccation occurs when stem symplastic rel-
ative water content decreases below 30 % (Mantova et al.,
2021; Kursar et al., 2009). Although the two thresholds are
applied independently, drought-driven starvation and desic-
cation processes are strongly coupled in the model: decreases
in soil water potential cause stomatal closure and cavitation-
induced defoliation, both reducing carbon assimilation and,
in turn, reduced carbon storage impacts the capacity of plants
to produce new tissues and, hence, recover hydraulic con-
ductance and normal gas exchange rates (McDowell et al.,
2022).

Although recruitment is known to be the result of a num-
ber of processes (e.g., flowering and pollination, fruit/seed
production, dispersal, storage, seed predation, germination,
seedling establishment and survival until the sapling stage),
they are challenging to include in models (Price et al., 2001;
König et al., 2022). Recruitment in MEDFATE is thus mod-
eled using a single aggregated process that estimates the ap-
pearance of young plants, as done in other models (Hanbury-
Brown et al., 2022). Dispersal is not considered and local

seed production is considered as a binary process; namely
plants are fertile and able to produce viable seeds if they
reach a given taxon-specific height (different for shrubs and
trees). Recruitment of species with available seeds is fur-
ther constrained by three species-specific thresholds, includ-
ing minimum temperature, maximum aridity and minimum
FPAR, that are used to determine whether recruitment (i.e.,
ingrowth into an initial plant size) is possible, similarly to
FORCLIM (Bugmann, 1996). A constant probability of re-
cruitment determines actual recruitment within these biocli-
matic limits.

3 Study area, forest, soil and historic weather data

Our target region for parameter estimation, model evalua-
tion and application was Catalonia (32 108 km2, NE Spain).
Most of the region has a Mediterranean climate, with hot and
dry summers, but it includes strong climatic variation due to
its complex orography. Mean annual temperature ranges be-
tween +3 and +17 ◦C (average +12.3 ◦C), and annual rain-
fall ranges between 344 and 1587 mm (average 684 mm).
Abandonment of rural areas during the second half of the
20th century led to a remarkable increase in the area covered
by forests. Nowadays, forests cover around 47 % of Catalonia
and are increasing in density and wood volume stock. Among
forested areas, 52 % are dominated by conifers, 36 % by
broadleaves, and 13 % are considered mixed forests (Minis-
terio de Agricultura y Pesca and Alimentación y Medio Am-
biente, 2017).

Three surveys of Spanish National Forest Inventory
(SNFI) are available for the region (SNFI2, 1989–1991;
SNFI3, 2000–2001; and SNFI4, 2013–2016). These were
conducted using a systematic sampling scheme, with
10 820 plots in SNFI2, 11 314 plots in SNFI3 (average den-
sity of 1 plot per km2 in both cases) and 5500 plots in SNFI4
(0.5 plot per km2). Plot sampling involves a variable radius
with circular nested subplots, where trees of different diam-
eter classes are identified to the species level and their DBH
and height is measured. Shrub sampling consists in determin-
ing mean height and percent cover by species. Since field soil
data are absent in forest inventory plots, soil physical prop-
erties (i.e., texture, bulk density, organic matter content) in
plot locations were drawn from the global database SoilGrids
(Hengl et al., 2017), complemented by rock fragment con-
tent estimates derived from surface stoniness measurements
made during SNFI surveys. Soil water retention and conduc-
tivity curves followed the van Genuchten (1980) model, with
parameters estimated following Tóth et al. (2015). Histor-
ical daily weather data used for parameter estimation and
model evaluation exercises were obtained via interpolation
of weather records from Catalan and Spanish surface station
networks on forest plot locations using the R package “me-
teoland” (De Cáceres et al., 2018).
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Table 2. Summary of procedures used for taxon parameter estimation (a) and model-inbuilt imputation of missing values (b). The number
of parameters is indicated as well as the percentage with respect to the 117 parameters in MEDFATE.

(a) Estimation procedures No. parameters %

Forest inventory data (Sect. 4.1) 12 10.3
Plant trait databases (Sect. 4.2) 49 41.9
Allometry databases (Sect. 4.2) 19 16.2
Meta-modeling exercise (Sect. 4.3) 6 5.1
Calibration exercise (Sect. 4.4) 3 2.6
None (always requiring imputation) 28 23.9

(b) Imputation procedures (Sect. 4.5) No. parameters %

Quantitative trait relationship 17 14.5
Qualitative trait relationship 31 26.5
Family means/qualitative trait relationship 4 3.4
Family means/default value 11 9.4
Default value 44 37.6
None (completely specified from databases) 10 8.5

4 Parameter estimation

We reduced the tree and shrub species classification codes
included in the SNFI to 217 taxon entities, of which 144
taxa were at the species level and 73 were aggregated at the
genus level based on their frequency and the availability of
species-specific data. Upper taxonomic levels (genus, fam-
ily, order) were filled using the R package “taxize” (Cham-
berlain and Szocs, 2013). MEDFATE (version 2.9.3) requires
taxon-specific estimates for 117 different parameters (includ-
ing qualitative variables and allometric coefficients) to be
run. The different procedures employed for parameter esti-
mation are summarized in Table 2 and are detailed in the
following subsections. Table S1 includes the strategy used
to estimate taxon values for each parameter. The final taxon
parameter estimates are given in Table S3.

4.1 Parameter estimates obtained from forest
inventory data

We used SNFI data from the entire Spanish territory to find
suitable values for 12 parameters. A number of quantitative
traits, such as maximum and median plant heights and tree
diameter–height relationships under shade and sunlit con-
ditions, were directly calculated from SNFI shrub and tree
records (Morin et al., 2021). We also used permanent for-
est inventory plot data corresponding to the SNFI2–3 and
SNFI3–4 periods and the entire Spanish territory to estimate
tree mortality and recruitment parameters, to maximize the
amount of data available for each taxon. We first estimated
observed tree mortality rates, excluding those plots where
management effects (i.e., stumps) were detected (observed
mortality rates for different SNFI periods are provided in Ta-
ble S5). Since the model incorporates mortality due to carbon
starvation and desiccation explicitly, using observed mortal-
ity rates as estimates of model’s basal mortality rates leads

to overestimation of mortality. Following preliminary tests,
we defined tree basal mortality rates for all species as one-
third of observed mortality rates. We then manually modified
basal mortality rates for the main tree species to obtain an ac-
ceptable bias in basal area mortality predictions when evalu-
ating the model at the regional level for the SNFI3–4 period
(see Sect. 5.1). To obtain species-specific recruitment param-
eter estimates we first calculated three bioclimatic variables
(minimum monthly temperature, moisture index and ground
FPAR) for each forest plot. For tree taxa, we fitted a non-
linear model by maximum likelihood for the probability of
ingrowth into the 7.5<DBH< 12.5 cm class between inven-
tory surveys, based on plots where the species was present in
the initial survey, and where the parameters to be calibrated
were the thresholds for the three bioclimatic variables men-
tioned in Sect. 2.5 and the probability of ingrowth within
those limits (ingrowth probabilities estimated for different
SNFI periods are provided in Table S6). For shrub taxa, bio-
climatic thresholds were determined using 1 % percentiles
among plots where the species was found and we assumed
a constant 5 % probability of annual recruitment within these
limits.

4.2 Parameter estimates obtained from allometric and
plant trait databases

We used available allometric relationships for shrub and tree
leaf biomass and crown base height assembled from multiple
sources (Hasenauer, 1997; Burriel et al., 2004; De Cáceres
et al., 2019) to populate 19 (16 %) model parameters. In
turn, 49 (42 %) model parameters were matched to plant trait
definitions from existing plant trait databases (see Table S1).
Among those, 23 (47 %) model parameters were matched to
plant traits drawn from TRY public data sets (version 5.0;
https://www.try-db.org/, last access: 30 May 2023) (Kattge

https://doi.org/10.5194/gmd-16-3165-2023 Geosci. Model Dev., 16, 3165–3201, 2023

https://www.try-db.org/


3174 M. De Cáceres et al.: MEDFATE 2.9.3: a trait-enabled model for Mediterranean forests

et al., 2020). TRY data sets were complemented by additional
databases, global analysis papers and personal compilations
for phenology, anatomy and morphology (Tavşanoglu and
Pausas, 2018; Zanne et al., 2009; Morris et al., 2016), plant
hydraulics (Mencuccini et al., 2019; Sanchez-Martinez et al.,
2020; Martin-StPaul et al., 2017; Choat et al., 2012), tissue
water content (Bartlett et al., 2012), and stomatal or cuticular
conductance (Hoshika et al., 2018; Duursma et al., 2018) (see
Table S2). Transpiration and photosynthesis functions of the
advanced sub-model were readily parameterizable with mea-
sured traits, although hydraulic parameters were often miss-
ing for leaf and root segments. In the case of the basic sub-
model, xylem vulnerability curves were taken as estimates of
the parameters regulating stem PLC, but eight other param-
eters regulating transpiration and photosynthesis (Eqs. B2–
B4) could not be conceptually matched to plant traits.

Most plant traits were mapped directly, sometimes requir-
ing homogenizing measurement units, whereas a few re-
quired the use of transforming functions. While most param-
eters were estimated from measurable plant traits, the min-
imum relative storage for sapwood growth (RSSG) was es-
timated by monotonically re-scaling an ordinal (0–5) shade
tolerance index (Niinemets and Valladares, 2006) to a pro-
portion [0–1], relying on the expectation that a higher de-
gree of shade tolerance implies a stronger prioritization of
leave/fine-root maintenance over stem growth. Parameters
for plant taxa were estimated using species-level averages
or genus-level averages (for genus taxa or when the target
species was not found in the source database).

4.3 Estimation of transpiration and photosynthesis
parameters of the basic sub-model

As indicated above, eight key parameters regulating transpi-
ration and photosynthesis in the basic sub-model could not be
estimated from plant trait databases. To make transpiration,
gross photosynthesis and growth predictions obtained by the
basic sub-model as similar as possible to those produced
by the advanced sub-model, we conducted a meta-modeling
exercise in which the results of simulations with the ad-
vanced sub-model were used to provide estimates for the
eight parameters of the basic sub-model. The meta-modeling
exercise was conducted separately for each of 12 priori-
tized species on the basis of their importance in the study
area. These were Pinus halepensis Mill. (Aleppo pine), Pi-
nus nigra subsp. salzmannii J. F. Arnold (black pine), Pi-
nus sylvestris L. (Scots pine), Pinus pinea L. (stone pine),
Pinus uncinata Ramond ex A. DC. (mountain pine), Fagus
sylvatica L. (European beech), Abies alba (white fir), Quer-
cus ilex L. (holm oak), Quercus faginea Lam. (Portuguese
oak), Quercus pubescens Mill. (downy oak) and Quercus
suber (cork oak), which altogether represent 87 % of the to-
tal number of stems (Ministerio de Agricultura y Pesca and
Alimentación y Medio Ambiente, 2017). Transpiration and
photosynthesis parameters of each species were carefully re-

vised by experts prior to conducting the meta-modeling ex-
ercise. Furthermore, for 6 out of the 12 taxa an evaluation of
the performance of the advanced sub-model had been con-
ducted previously using observed data from experimental
forest plots, which revealed and good predictive ability in
terms of soil moisture dynamics and transpiration rates, but
a more limited ability to accurately predict plant water sta-
tus (De Cáceres et al., 2021). Details of the meta-modeling
procedure and results are provided in Appendix Sect. B2.

4.4 Calibration of sapwood respiration, growth and
senescence parameters

We conducted calibration exercises to obtain suitable esti-
mates for three key parameters regulating sapwood respi-
ration, growth and senescence. Given the large amount of
sapwood biomass in trees, the daily maintenance respiration
rate of sapwood parenchyma (RERsapwood) is an important
parameter determining C availability for growth. Maximum
daily sapwood growth rates relative to cambium perime-
ter (RGRcambiummax) represent optimum growth rates, and,
since leaf and fine-root allocation targets depend on sapwood
area, it determines whole-tree growth rates. Finally, maxi-
mum daily sapwood senescence rate (SRsapwood) defines the
rate of sapwood-to-heartwood conversion and contributes to
modulate sapwood biomass and its maintenance costs. Pa-
rameters regulating the maximum growth rates of leaves and
fine roots were deemed less important, given the allocation
constraints to the formation of these organs. Tree ring data
have been previously used for the calibration of growth pa-
rameters in other models (Fyllas et al., 2017), so we adopted
the same approach. The tree ring data set used for the calibra-
tion exercise was sampled in 75 SNFI plots, located in pure
stands whose dominant species are F. sylvatica, P. halepen-
sis, P. nigra, P. sylvestris or Q. pubescens, and selected to en-
compass a range of climatic aridity (Rosas et al., 2019). We
took annual basal area increments of each tree as the observa-
tions to be matched by model predictions of sapwood growth.
Simulations of the calibration exercise were performed us-
ing the basic sub-model only, for computational reasons, but
we compared the performance of the two sub-models with
calibrated parameter values. Further details of the calibra-
tion procedure and results are given in Appendix Sect. B3.
We did not find any significant independent effect of species
identity on RGRcambiummax and RERsapwood and only mod-
erately for SRsapwood. In contrast, plots where the trees grew
faster resulted in larger calibrated values of RGRcambiummax
(Table B4). This result allowed us to devise a strategy to ob-
tain estimates of this parameter for all tree species. Assuming
that RGRcambiummax should scale proportionally to observed
growth rates, we fitted a regression through the origin for the
observed relationship between observed mean annual relative
growth rates and RGRcambiummax (Fig. 2). We then estimated
mean annual growth rates relative to cambium perimeter for
all tree species using re-measured tree records in SNFI per-
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Figure 2. Linear relationships, fitted using regression through the
origin, between observed mean annual relative growth rates in cali-
bration plots and calibrated RGRcambiummax. Symbols represent in-
dividual forest plots. The adjusted R2 value of regressions through
the origin cannot be compared to those of ordinary linear regression
models.

manent plots by solving for the annual rate leading to the
observed diameter increment between consecutive surveys.
These growth rate estimates were obtained using data from
both the SNFI2–3 and SNFI3–4 periods in the Catalan terri-
tory (but estimates for different SNFI periods and the entire
Spain are provided in Table S4). We finally obtained esti-
mates of RGRcambiummax for all tree taxa by using the calcu-
lated mean annual relative growth rates as input in the fitted
linear models. We took the averages of calibrated SRsapwood
and RERsapwood values as defaults for all taxa.

4.5 Inbuilt parameter estimation procedures

Altogether, the previous estimation procedures provided suit-
able values for 89 parameters, still leaving 28 (24 %) model
parameters to be populated (Table 2). Moreover, only for 10
(8.5 %) parameters estimates were obtained for all 217 taxa.
Therefore, large amounts of missing values remained after
previous estimation procedures (Tables S1 and S3). Differ-
ent imputation strategies were adopted to address this is-
sue (Tables 2b and S1). Trait–trait relationships are fre-
quently employed for parameter estimation, most often fol-
lowing functional syndromes (Maréchaux and Chave, 2017;
Sakschewski et al., 2015). Following this strategy, we de-
fined trait-to-trait mappings between parameters with low
missing rates and parameters with higher missing rates (see
Fig. A1). Quantitative trait–trait relationships were adopted

for 17 (15 %) parameters, based on functional spectra, mainly
to estimate parameters of hydraulic conductivity curves,
pressure–volume curves, photosynthetic parameters and tis-
sue respiration rates. Relationships with qualitative traits
were adopted to populate 31 (26.5 %) quantitative parame-
ters, with average values for combinations of leaf shape, life
size and/or life form being frequently used as a source for the
estimation of other parameters. For 15 (13 %) parameters we
estimated family-level averages, but we combined this strat-
egy with other imputation strategies whenever family-level
values were missing. Finally, we provided single value de-
faults for 44 (38 %) parameters where we felt that taxonomic
resolution was not critical. Among them, 13 parameters had
not been estimated by any procedure and, therefore, can be
considered as constants in the current model version. Instead
of filling imputed values in the taxon parameter table, we
implemented inbuilt parameter imputation procedures within
MEDFATE initialization routines.

5 Evaluation and application at the regional level

5.1 Evaluation with SNFI data

While complex models can be applied to a range of purposes,
model suitability should be assessed with respect to intended
application (Planque et al., 2022). Our aim to use MED-
FATE to project forest dynamics at the regional level required
evaluating the capacity of the model to reproduce observed
changes in forest dynamics. We therefore compared simu-
lated forest dynamics between surveys of the SNFI in Catalo-
nia against observations from repeated SNFI plots. Specif-
ically, we selected 1779 permanent plots (i.e., common to
all three surveys) without signs of management and avoiding
large decreases (i.e.,> 10 %) in stand basal area, which could
indicate the effect of disturbances. Three sets of simulations
were performed: (i) between SNFI2 and SNFI3 (∼ 10 years),
(ii) between SNFI3 and SNFI4 (∼ 15 years), and (iii) be-
tween SNFI2 and SNFI4 (∼ 25 years). Since the model simu-
lates ingrowth at DBH= 7.5 cm, smaller trees were excluded
from the initial forest state. Both the basic and advanced sub-
models were tested, taking 5 and 120 h of computation on
20 parallel threads, respectively, for the longest period. Eval-
uation focused on predictions of the following: (a) changes
in stand basal area due to growth of surviving trees, (b) stand
basal area losses due to tree mortality, (c) stand basal area in-
creases due to ingrowth into the first diameter class (ingrowth
into large size classes can occur in the observed data due to
the variable radius sampling, but these were not included),
and (d) overall changes in stand basal area. With the aim of
comparing the performance of MEDFATE with that of an
empirical alternative, we used an integral projection model
(IPM) calibrated using SNFI data for the whole of Spain
and evaluated its predictive performance over the same target
region. Unlike matrix-based models, the IPM methodology
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Figure 3. Model evaluation results with respect to annual rates of basal area (BA) changes (m2 ha−1 yr−1) predicted for different processes
(growth, mortality, ingrowth) and taking into account all of them (overall). Results are shown for the two sub-models and for simulations
spanning different periods between forest inventory surveys (SNFI2–3, SNFI3–4 and SNFI2–4). Note that calibration of growth, mortality
and recruitment parameters was performed using data for the SNFI2–3 and SNFI3–4 periods. Figure A5 shows model evaluation results for
the SNFI2–3 and SNFI3–4 periods with parameters calibrated using data from a different period.

does not classify the population of trees into discrete stage
classes. Rather, each tree population is described by a contin-
uous distribution as a function of a continuous variable-like
size (Easterling et al., 2000). A brief description of the IPM
implemented in this work is given in Appendix C. For further
details, see García-Callejas et al. (2017).

Overall annual changes in stand basal area for the SNFI2–
4 period (∼ 25 years) had a mean bias of−0.03 m2 ha−1 yr−1

(−7.8 %) for the basic sub-model, and −0.02 m2 ha−1 yr−1

(−4.4 %) for the advanced sub-model (Fig. 3), whereas
the empirical IPM over the same region exhibited a larger
mean bias, +0.18 m2 ha−1 yr−1 (+46 %), likely because
it was calibrated for the whole of Spain (Table D1).
RMSE was 0.28 m2 ha−1 yr−1 (74 %) for the basic sub-model
and 0.31 m2 ha−1 yr−1 (82 %) for the advanced sub-model,
whereas RMSE for IPM was 0.30 m2 ha−1 yr−1 (80 %), indi-
cating a comparable prediction capacity of MEDFATE and
IPM at the plot level. When inspecting the error distribution
of overall basal area change predictions we observed a small
tendency to under-predict basal area increases in the coldest
areas of the Pyrenees (Figs. A2 and A3). Overall, MEDFATE

performed better for the SNFI2–3 and SNFI2–4 periods than
for the SNFI3–4 period (Fig. 3). This seems to be a conse-
quence of observed growth rates being different for SNFI2–
3 and SNFI3–4, which cause growth biases when the model
is calibrated with one period and evaluated with the other
(Fig. A5). Consequently, future projections may be affected
by the additional uncertainty derived from growth rate esti-
mations. Predicted stand basal area increments due to growth
had slightly larger error rates when using the advanced sub-
model than when using the basic sub-model, but, conversely,
the advanced sub-model yielded slightly more accurate pre-
dictions of mortality than the basic sub-model for SNFI3–4
and SNFI2–4 periods (Fig. 3; Table D1). Simulations using
the two sub-models performed similarly with respect to in-
growth.

5.2 Application

To illustrate the potential of the fully parameterized model to
project future forest functioning and dynamics at the regional
level, we took all forest plots surveyed in Catalonia during
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Figure 4. Precipitation input (a) and model predictions of annual net primary production (b), canopy leaf area index (c) and wood volume
stock (d) for the 21st century under a scenario without climate change (No CC) and two climate change scenarios (RCP 4.5 and RCP 8.5) in
Catalan forests. Results for the period 2000–2020 correspond to historic climate. Continuous lines correspond to median values, and shaded
areas indicate the 25 %–75 % quantile range, all of them estimated across all forest plots.

SNFI3 (year ∼ 2000) and projected them for the 21st cen-
tury. We took interpolated historical records for the 2001–
2020 period and climate projections for the 2021–2100 pe-
riod, corresponding to the 5th phase of the Coupled Model
Intercomparison Project (CMIP5) under Representative Con-
centration Pathways (RCPs) 4.5 and 8.5. We obtained daily
weather projections from the EURO-CORDEX project (Kot-
larski et al., 2014), corresponding to a single global/regional
climate model couple (i.e., MPI-ESM/RCA4), which has
been deemed appropriate to describe future climate change
in Catalonia (Altava-Ortiz and Barrera-Escoda, 2020). Since
the spatial resolution of climate model predictions was 0.1 ‰
(∼ 9 km), we used empirical quantile mapping to bias-correct
and downscale weather to the forest plot scale, taking in-
terpolated historical records (1976–2005 period) as refer-
ence data (De Cáceres et al., 2018). Annual [CO2] series
under RCP 4.5 and RCP 8.5 scenarios were obtained from
Meinshausen et al. (2011). A climate scenario assuming
constant climate (No CC) was also evaluated for compari-
son with RCP scenarios, by repeating historical 2001–2020

weather over the century and assuming [CO2] = 386 ppm.
Forest management and natural disturbances such as wild-
fires or biotic attacks were not considered for simplicity.
MEDFATE runs were conducted using the basic sub-model,
which nevertheless required 72 h of computation on 20 paral-
lel threads to process each scenario (a graphical comparison
of results obtained with the two sub-models is provided in
Fig. A4 for a small subset of plots).

Climate projections for Catalonia include a steady increase
in temperature (+3.5 ◦C under RCP 8.5) and, while much
more uncertain, a 40 % reduction in annual precipitation
during the second half of the 21st century under RCP 8.5
(Fig. 4a) (Altava-Ortiz and Barrera-Escoda, 2020). Despite
these trends, the most important regional-level pattern pre-
dicted by the model was a steady increase in wood volume
stock throughout the century under all three scenarios and for
all main tree species (Figs. 4d and 5). This is largely because
most forests in Catalonia are relatively young as a conse-
quence of abandonment of agricultural lands and reduction of
forest management during the second half of the 20th century
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Figure 5. Regional-level timber accumulation (a, c) and annual mortality loss (b, d) predicted by MEDFATE under a scenario of constant cli-
mate (No CC) and two climate change scenarios (RCP 4.5 and RCP 8.5) for the 10 main tree species in Catalonia, grouped into conifer (a, b)
and broad-leaf species (c, d). Results for period 2000–2020 correspond to historic climate.

(Vilà-Cabrera et al., 2017). Net primary production (NPP)
decreased steadily along the century under a stable climate
due to the increase in respiration costs needed to sustain
an increasing forest biomass (Fig. 4b). Under two climate
change scenarios, however, the progressive increase in tem-
peratures and air [CO2] resulted in higher NPP and slightly
larger timber accumulation during the central part of the
21st century, compared to predictions under stable climate.
The continuation of ongoing forest densification caused LAI
to increase asymptotically under stable climate (Fig. 4c).
Nevertheless, strong decreases in NPP and LAI were pre-
dicted between 2070 and 2100 under RCP 4.5 and RCP 8.5,
as a result of years with very low rainfall which, together
with the increased VPD, caused widespread drought-induced
defoliation. Increased mortality rates were also predicted un-
der RCP 8.5 for this last period, as shown by the lower rates
of wood volume stock accumulation (Fig. 4d). We found
differences among species in the effect of extreme drought
events on tree mortality, being Pinus nigra, P. sylvestris and
P. halepensis the most affected species among pines (Fig. 5).
We also found increased drought-related mortality rates in
oak species (Quercus ilex and Q. suber), but, since the model

does not account for resprouting at present, these predictions
should be interpreted as above-ground mortality.

6 Discussion

6.1 Accounting for functional diversity in
regional-level forest models

Species-specific parameter estimation in complex dynamic
vegetation models is often done by focusing on one species
at a time (e.g., Davi and Cailleret, 2017; Guillemot et al.,
2017), but this becomes impractical when the number of
taxonomic entities increases. The wealth of information in
global plant trait databases and forest inventory data facil-
itates dealing with functional diversity, but our experience
shows that model parametrization using these resources has
its own challenges. Clearly, this strategy becomes more use-
ful the larger the fraction is of taxon-specific parameters
that can be conceptually matched to observable traits, which
needs to be accounted for during model design and formu-
lation. In other words, the model should be “trait-enabled”.
The design of MEDFATE allowed us to match up to 49 pa-
rameters with functional trait definitions, which correspond
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to 50 % of parameters if we exclude allometric coefficients.
Even in “trait-enabled” models there will always be pa-
rameters that are not observable or are only seldom mea-
sured, even for the most common species, which requires
adopting alternative parameter estimation procedures. Cal-
ibration of key, but non-observable, parameters using field
data from particular stands can be employed in some cases.
For example, we used calibration and tree ring series from
75 SNFI plots to address the estimation of growth/senes-
cence parameters. However, this approach implies the pos-
sibility that taxon-average estimates across calibration plots
led to biased predictions in the application at the regional
level. Moreover, it is unlikely to have the appropriate cali-
bration data (e.g., tree ring series) for all woody taxa occur-
ring in the target region. We circumvented these problems
by fitting a relationship between calibrated growth or senes-
cence rates (RGRcambiummax and SRsapwood) and observed
annual growth rates relative to cambium perimeter, which
can be empirically estimated using resampled plot data for
all species included in the forest inventory. Another alterna-
tive estimation procedure that we adopted to populate non-
observable key parameters was meta-modeling. The strong
computational requirements of the advanced sub-model for
regional applications led us to conduct improvements in the
basic sub-model (including an increased sensitivity to envi-
ronmental variables) and a meta-modeling exercise to obtain
estimates for non-observable transpiration and photosynthe-
sis parameters. This estimation procedure can be applied to
any taxon but requires confidence in the trait parameter es-
timates of the model used as reference (here, the advanced
sub-model). We partially built this confidence from previous
stand-level evaluation exercises (De Cáceres et al., 2021),
but the meta-modeling exercise should be repeated if current
parameter values were deemed incorrect for some species.
Developers should always avoid manual tuning, due to its
non-reproducibility and slowness of application. We only re-
sorted on this procedure for baseline mortality rates, forced
by the mixture of mechanistic and empirical design in mor-
tality modeling, although we acknowledge that calibration
exercises should be preferred (e.g., Hartig et al., 2012).

Another important limitation when estimating parameters
for multiple taxa is, obviously, plant trait data availability.
Even though plant trait databases continue to increase in
size (Kattge et al., 2020), the finer the taxonomic resolu-
tion is, the less information there is available. This leads to
a trade-off between the taxonomic resolution of the model
entities vs. the amount of missing parameter values in the
final parameter table. When parsing trait databases we took
both species- or genus-level averages as valid estimates to
reduce the frequency of missing values in the parameter ta-
ble, but this entails a potential loss of accuracy at the species
level. Regardless of this decision, and no matter how much
effort is put in parameter estimation procedures, parameter
imputation will always be needed to fill information gaps
in models representing multiple taxa. We recommend im-

plementing imputation procedures in initialization routines,
keeping them separated from taxon parameter tables because
the large number of missing values in the table reveals infor-
mation gaps to be addressed with additional data gathering.
A range of parameter imputation procedures is possible for
observable traits. Models often use quantitative–quantitative
trait relationships from functional syndromes and averages
across levels of qualitative traits to obtain suitable species
parameter estimates (Thonicke et al., 2020; Sakschewski
et al., 2015). Assuming taxonomic families bear a trait phy-
logenetic signal, we complemented the information provided
by functional covariation with family-level averages (An-
deregg et al., 2022), but more sophisticated phylogeneti-
cally informed approaches would also be possible (Sanchez-
Martinez et al., 2020). Note that models can also use known
relationships between measured traits and demographic rates
(i.e., between wood density and mortality rates) for the impu-
tation of the latter (Fyllas et al., 2017; Thonicke et al., 2020).
In our opinion, more research is needed around the impu-
tation procedures to fill in missing taxon parameter values.
For example, future research could evaluate the phylogenetic
signal of multiple traits, compare the relative performance
of different imputation alternatives, analogously to the com-
parison of alternative biomass allometries (Ameztegui et al.,
2022), or evaluate the loss of accuracy of model predictions
caused by imputations. As for databases of biomass or vol-
ume allometric equations, the development of databases doc-
umenting bi- or multivariate trait relationships and their do-
main of application could help modelers to implement ade-
quate imputation strategies.

We addressed specific- and supra-specific trait variability
in our study, but we did not consider intra-specific variabil-
ity, which can amount to 25 % of overall phenotypic varia-
tion (Funk et al., 2017; Siefert et al., 2015). Berzaghi et al.
(2020) describe three main strategies to account for intra-
specific trait variability in vegetation models, among which
the first two could be combined with our parameter esti-
mation approach. First, prescribed (e.g., non-plastic) intra-
specific trait variation may be approximated in models using
within-species environmental-trait relationships or trait co-
variation (Rosas et al., 2019; Poyatos et al., 2007). To im-
plement this strategy, intra-specific functional trait databases
are needed, but they are presently scarce (López et al., 2021).
These relationships may be implemented as inbuilt estima-
tion rules to be applied at the time of initialization. Second,
intra-specific variation can be considered in vegetation mod-
els by dynamically changing parameter values (e.g., photo-
synthesis) depending on transient environmental conditions
(i.e., nitrogen content, average temperature or light availabil-
ity) (Prentice et al., 2014; Crous et al., 2022). This strat-
egy can also be combined with our parameter estimation
approach, but it requires implementing equations internally
while acknowledging trade-offs between traits and limits to
phenotypic plasticity. Finally, trait inheritance and, there-
fore, eco-evolutionary dynamics can be simulated (Oddou-

https://doi.org/10.5194/gmd-16-3165-2023 Geosci. Model Dev., 16, 3165–3201, 2023



3180 M. De Cáceres et al.: MEDFATE 2.9.3: a trait-enabled model for Mediterranean forests

Muratorio and Davi, 2014), but we believe this approach to
be computationally too demanding for regional-level appli-
cations.

6.2 Reproducibility and transferability of parameter
estimation strategies

Given the iterative nature of model development, taxon-
specific model parameters need to be re-estimated (and
model performance re-evaluated) in many situations, such as
when the design or mathematical formulation of the model
is modified, when taxonomic entities are redefined, or when
updates of existing trait data sources occur. Unlike models
developed for single or few species, parameter re-estimation
for multiple-taxa requires that procedures are reproducible
and automated. All the procedures mentioned in the previous
section, except manual tuning, are reproducible and were re-
peated several times during the development of MEDFATE.
The code to implement parameter estimation and evaluation
procedures should be continuously integrated into workflows
coupled to modeling development cycles, in the same way as
model evaluation procedures for all the key outputs related to
the most important applications. In our opinion, this aspect
of trait-enabled model development deserves more attention
and should be one of the foci of collaboration efforts between
modelers, with the long-term aim of achieving community
modeling cyber infrastructures (Fer et al., 2021).

Another practical issue is the transferability of parameter
estimates and estimation procedures, initially developed for
a given trait-enabled model and region, to new target regions
and/or other models. Even though intra-taxon variability is
neglected, taxon-average estimates derived from global plant
trait databases are, in principle, as valid for our target re-
gion as they are for other regions, assuming that processes
where they operate have been represented in a proper way.
Moreover, trait-enabled forest models could share databases
of taxon-based parameter estimates thanks to parameter defi-
nitions being matched to the same measurable entities. Since
they derive from global data, imputation procedures based
on among-species trait covariation or family-level averages
should be equally valid in different regions. Procedures for
extracting taxon-specific parameter estimates from (global)
trait databases could also be used for new taxa or other mod-
els, which points to the possibility of sharing these proce-
dures among developers, although the information available
will differ widely depending on the target region. In contrast,
empirical parameters obtained from forest inventory data are
unlikely to be valid in different areas (Thonicke et al., 2020),
and the procedures to derive them may need to be tailored
to idiosyncratic aspects of national forest inventories (e.g.,
plot spatial arrangement and temporal replication, taxonomic
treatment, field sampling protocols), unless harmonized for-
est inventory data are used. Calibration and meta-analyses
procedures, or relationships between growth/senescence pa-
rameters and observed annual relative growth rates, could be

applied to other target regions or species, but they are specific
to MEDFATE.

6.3 The value of trait-enabled models for the
projection of forest dynamics at the regional level

Mechanistic models are often regarded as having a larger
degree of uncertainty than empirical models – due to their
larger number of parameters (Adams et al., 2013), but mech-
anistic models of vegetation dynamics can achieve good per-
formance when calibrated for specific stands, and parameter
estimates are carefully chosen for target species (de Wergi-
fosse et al., 2022; Forrester et al., 2021). In the case of mech-
anistic trait-enabled models, one can expect substantial bi-
ases with respect to the prediction of forest dynamics be-
cause key parameters of demographic processes are unlikely
to be matched by available plant database traits. We achieved
a relatively small bias in overall basal area changes by intro-
ducing key empirical elements in the model design and pa-
rameter estimation – annual relative growth rates, mortality
rates, bioclimatic limits and probabilities of ingrowth – all
of them estimated from SNFI data. The accuracy of MED-
FATE was similar to that of the IPM over Catalonia and to
that reported in Trasobares et al. (2022) for an empirical for-
est projection system developed for the entire Spanish terri-
tory. This increases our confidence in MEDFATE for applica-
tions like projecting regional standing timber volume in the
target region. However, this does not mean that MEDFATE
should be preferred to more empirical approaches, which will
be much faster, robust and equally predictive, when the pur-
pose is to predict forest dynamics. Highly resolved models
like MEDFATE can potentially better represent the effect of
extreme climatic events on forest dynamics, but process and
input data uncertainties can substantially increase prediction
errors. The use of a global soil product for soil properties,
as opposed to regional data sources, and the lack of infor-
mation on rock content and the topographic context of forest
inventory plots surely contributes to larger errors. The fact
that estimates of rock fragment content obtained in the cali-
bration exercise were different across species (Fig. B3d and
Table B4) is an indication of the importance of these fac-
tors for accurate growth (and mortality) predictions. We did
not account for spatial variation in nutrient availability ei-
ther, which is known to influence growth rates. At present,
MEDFATE is unbalanced in the detail accorded to water, car-
bon and growth processes, with respect to mortality and re-
cruitment processes. The approach taken to model baseline
mortality rates and ingrowth was even simpler than many
forest gap models (Bugmann and Seidl, 2022), which may
explain the relatively poor results regarding those processes
and points to future development efforts. For example, mor-
tality predictions could be improved by fitting more com-
plex empirical models that account for tree size or recent
growth (Vanoni et al., 2019). However, these equations may
be difficult to parameterize in a model that also includes ex-
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plicit mortality mechanisms based on water and carbon levels
(i.e., desiccation and carbon starvation). Mechanistic mod-
eling of drought-induced mortality is an active field of re-
search (Venturas et al., 2021; Liu et al., 2021; Trugman et al.,
2021; McDowell et al., 2022), but important developments
are still required to address multiple interactions between
drivers. In our opinion, hybrid mechanistic and empirical ap-
proaches are thus needed to produce unbiased predictions of
tree mortality currently. Recruitment prediction could bene-
fit from considering additional refinements, such as account-
ing for resprouting capacity or mechanistically dealing with
seedling and sapling mortality (König et al., 2022), at the
potential cost of increasing the number of non-observable
model parameters.

It is also interesting to discuss the differences between
MEDFATE simulations conducted using the basic vs. ad-
vanced sub-models. Mechanistic models are expected to per-
form well under novel environmental conditions, due to their
ability to separate the causal effects of different climatic vari-
ables. MEDFATE with the advanced sub-model is clearly a
better choice than with the basic sub-model in this respect,
but the advanced sub-model is computationally too demand-
ing for large-scale applications. Like other models before
(e.g., Landsberg and Sands, 2011), the modifications made
to the basic, yet faster, sub-model show that it is possible to
design and parameterize simpler approaches while fully re-
taining the ecophysiological responsiveness to key climate
change variables such as [CO2] or VPD. However, further
work would be necessary to compare the performance of the
two sub-models in terms of key stand level E, gross primary
production (GPP) or NPP fluxes under different conditions.
In terms of forest dynamics, the advanced sub-model pro-
duced somewhat less accurate growth estimates than the ba-
sic sub-model. We attribute this different performance to the
fact that calibration of growth parameters was conducted us-
ing the basic sub-model and to differences in the predictions
of soil moisture and plant water status yielded by the two
sub-models.

Given this its lower computational requirements and bet-
ter evaluation results, we recommend using MEDFATE with
the basic sub-model for regional-scale joint projections of
Mediterranean forest function and dynamics under a coher-
ent set of mechanistic assumptions, although calibration and
evaluation exercises may need to be repeated for novel tar-
get regions. In our application to Catalonia we illustrated the
projection of structural variables of interest for forest man-
agement planning (such as basal area, density or volume
stock per tree species) as well as variables directly related
to ecosystem function (such as LAI, E, GPP or NPP). Future
work should focus on the evaluation of MEDFATE’s perfor-
mance with respect to this second set of variables.

7 Conclusion

Here we presented the design, parameter estimation and eval-
uation of the MEDFATE model, coupled with forest inven-
tory data, for its application at the regional level in Cat-
alonia. Our model is similar to many forest gap models in
terms of its representation of population structure, but it has a
higher degree of detail in the representation of water and car-
bon processes, much like other hybrid models (Fisher et al.,
2018; Liu et al., 2021). Models that are similar to MEDFATE
have been previously developed to simulate regional forest
dynamics in the Mediterranean Basin (Fyllas et al., 2007;
Mouillot et al., 2001; Fyllas and Troumbis, 2009). However,
the detail on plant hydraulics of the advanced sub-model
is similar to more specialized models focusing on drought-
induced plant desiccation (Cochard et al., 2021; Ruffault
et al., 2022). MEDFATE has some unique features (i.e., the
link between xylem cavitation and leaf defoliation, together
with the need to build new sapwood tissue to recover wa-
ter transport capacity) that make it suitable to study drought
legacy effects. Overall, we think that MEDFATE is an at-
tractive tool to study forest function and dynamics under
projections of increased water limitations, such as those of
Mediterranean climate. Besides the value of the model, we
illustrated the process, challenges and potential strategies to
determine parameter estimates for a large number of taxa by
extensively using plant trait databases, which can be useful
for the parametrization of other trait-enabled models.
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Appendix A: Supplementary figures

Figure A1. Percentage of missing values for model parameters across species and parameter relationship (arrow) from which imputation is
performed (trait–trait quantitative relationship, averages for combinations of categorical traits or imputation from family means). Parameters
that are given constant values when missing are not shown. The definition of parameters is given in Table S1.

Geosci. Model Dev., 16, 3165–3201, 2023 https://doi.org/10.5194/gmd-16-3165-2023



M. De Cáceres et al.: MEDFATE 2.9.3: a trait-enabled model for Mediterranean forests 3183

Figure A2. Comparison of predicted vs. observed overall basal area changes and the distribution of model errors depending on initial basal
area, moisture index and mean annual temperature. Gray dots and black lines correspond to observations, orange dots and red lines predictions
with the basic sub-model, and light blue dots and blue lines to predictions with the advanced sub-model.
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Figure A3. Spatial distribution of prediction errors in overall basal area changes for simulations using the basic sub-model (a) or the advanced
sub-model (b).

Figure A4. Comparison of predictions obtained by MEDFATE using either the basic or advanced sub-models, for the 21st century under
a scenario of constant climate and a subset of 120 forest inventory plots. Continuous lines correspond to median values and shaded areas
indicate the 25 %–75 % quantile range, estimated across all forest plots.

Geosci. Model Dev., 16, 3165–3201, 2023 https://doi.org/10.5194/gmd-16-3165-2023



M. De Cáceres et al.: MEDFATE 2.9.3: a trait-enabled model for Mediterranean forests 3185

Figure A5. Model evaluation results with respect to annual rates of basal area (BA) changes (m2 ha−1 yr−1) predicted for different processes
(growth, mortality, ingrowth) and taking into account all of them (overall). Results are shown for simulations with the basic sub-model and
spanning either the SNFI2–3 or SNFI3–4 periods. Bar colors indicate the period used for calibration of growth, mortality and recruitment
parameters: “2–3–4” corresponds to calibration using data for the SNFI2–3 and SNFI3–4 periods; “crossed” corresponds to SNFI2–3 sim-
ulations with parameters calibrated using data from SNFI3–4 periods, and SNFI3–4 simulations with parameters calibrated using data from
SFNI2–3.
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Appendix B: Details of the design of the basic sub-model
and parameter estimation procedures

All mathematical symbols used here are described in Table 1.
Parameter definitions and units are given in Table S1.

B1 Transpiration and photosynthesis in the basic
sub-model

We describe here the modifications of transpiration and pho-
tosynthesis processes included in recent versions of the sub-
model, with respect to the description given in De Cáceres
et al. (2015). Radiation extinction, transpiration and photo-
synthesis processes are represented at a daily timescale in the
basic sub-model. Extinction of shortwave radiation (SWR)
and photosynthetically active radiation (PAR) through the
canopy follows Beer–Lambert’s equation with parameters
currently depending on leaf shape. Maximum transpiration –
i.e., before accounting for soil water deficit – for the whole
stand (Emax,stand) is estimated using daily Penman’s poten-
tial evapotranspiration (PET) and an empirical relationship
developed by Granier et al. (1999):

Emax,stand

PET
= 0.036+ 0.134 ·LAI− 0.006 ·LAI2, (B1)

where LAI is the leaf area index of the stand. While Granier
et al. (1999) estimated the coefficients of the Eq. (B1)
by pooling empirical data from different forest stands,
species differ in the relationship between leaf area and
maximum transpiration. Hence, we modified the estima-
tion of Emax,stand implemented in the original sub-model
(De Cáceres et al., 2015) as follows. If one neglects the in-
tercept (so that transpiration is zero for a bare stand) and as-
sumes that all leaf area of a stand corresponds to a single
cohort i, Eq. (B1) becomes

Emax,stand(i)

PET
= aTmax ·LAI+ bTmax ·LAI2, (B2)

where aTmax and bTmax are species-specific parameters for
cohort i. Assuming that reasonable species-specific estimates
are available for aTmax and bTmax, Eq. (B2) can be used to es-
timate Emax,stand(i), the maximum stand transpiration if dom-
inated by the species of cohort i. Once Emax,stand(i) has been
estimated for each species in the stand, the fraction of SWR
absorbed by a given cohort i is used to estimate its maximum
transpiration (Emax,i) from Emax,stand(i) (Korol et al., 1995).
Actual cohort transpiration (Ei) is a function of Emax,i , the
vertical distribution of its fine roots andKi,s, a Weibull func-
tion representing the relative reduction of transpiration in
response to edaphic drought in each soil layer s. In turn,
Ki,s depends on the soil water potential (9s) and two taxon-
specific parameters, 9extract and cextract, representing the soil
water potential corresponding to 50 % of maximum transpi-
ration and the coefficient regulating the steepness of transpi-

ration decrease, respectively (De Cáceres et al., 2015):

Ki,s =
Ei

Emax,stand(i)
= exp

(
ln(0.5) ·

(
9s

9extract

)cextract)
. (B3)

Ki,s values corresponding to different soil layers are av-
eraged using the distribution of fine roots as weights. In
contrast to the original formulation of the basic sub-model
(De Cáceres et al., 2015), however, in the current MEDFATE
version actual transpiration does not decrease to zero under
severe drought conditions, since water losses can still occur
via leaf cuticular conductance and incomplete stomatal clo-
sure (Duursma et al., 2018).

The basic sub-model assumes a linear relationship be-
tween plant transpiration and gross photosynthesis. However,
it accounts for the dependency of water use efficiency on
light availability, air CO2 concentration ([CO2]) and vapor
pressure deficit (VPD):

Ag,i = Ei ·WUEmax · f1(FPARi)

· f2(CO2) · f3(VPD), with

f1(FPARi)= FPARWUEPAR
i ,

f2(CO2)= 1− e−WUECO2 ·[CO2],

f3(VPD)= VPDWUEVPD , (B4)

where FPARi is the fraction of PAR at the mid-crown level of
cohort i, and WUEPAR, WUECO2 and WUEVPD are empirical
parameters modulating WUE depending on environmental
conditions (i.e., FPAR, [CO2] and VPD, respectively). Given
the formulation of Eq. (B4), WUEmax is interpreted as the
water use efficiency of the species at VPD= 1 kPa and with-
out air [CO2] or light limitations to photosynthesis.

B2 Details of the estimation of transpiration and
photosynthesis parameters of the basic sub-model

Eight key parameters regulating transpiration (aTmax and
bTmax from Eq. B2;9extract and cextract from Eq. B3) and pho-
tosynthesis (WUEmax, WUEPAR, WUECO2 and WUEVPD;
Eq. B4) in the basic sub-model could not be estimated from
plant trait databases. Assuming that predictions of the ad-
vanced sub-model are more accurate than those of the basic
sub-model, we adopted a meta-modeling approach to make
transpiration (E), gross photosynthesis (Ag) and soil mois-
ture predictions obtained by the basic sub-model as similar as
possible to those produced by the advanced sub-model (both
for present-day and projected climate). Increasing the simi-
larity of the two sub-models was important because growth
and senescence parameters were, later in the parametriza-
tion process, calibrated using simulations of the basic sub-
model only (see Sect. C3); therefore potential mismatches
in E and Ag or plant water status could translate in a mis-
match of growth (and hence, forest dynamics) predictions.

For each of the 12 species most important in the study
area, the meta-modeling exercise was as follows. We first re-
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Table B1. Revised estimates of the parameters regulating photosynthesis and transpiration in the advanced sub-model, for the set of 12
prioritized species. Parameter definitions and units are provided in Table B1. Species with an asterisk indicate those for which the performance
of the advanced sub-model had been evaluated previously.
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Abies alba 0.004 0.23 6.00 1.66 −2.54 1.30 6.71 −3.93 1.76 −2.80 58.09 103.28
Fagus sylvatica 0.004 0.34 8.00 1.87 −1.74 0.90 7.31 −3.31 1.87 −1.05 94.50 159.90
Pinus halepensis∗ 0.003 0.29 4.00 11.14 −2.38 0.15 12.71 −5.29 11.14 −3.07 72.20 124.17
Pinus nigra∗ 0.003 0.24 5.00 2.24 −2.25 0.41 3.14 −3.37 2.24 −2.16 68.50 118.77
Pinus pinea 0.003 0.24 4.00 11.14 −2.38 0.25 7.11 −4.43 11.14 −3.07 72.42 124.50
Pinus sylvestris∗ 0.003 0.24 5.00 2.45 −2.05 0.45 10.24 −3.20 2.45 −2.08 83.00 143.00
Pinus uncinata 0.003 0.24 5.00 2.45 −2.05 0.69 17.26 −4.27 2.45 −2.08 73.41 125.94
Quercus pubescens∗ 0.004 0.28 6.00 2.18 −2.32 0.70 10.27 −4.98 2.18 −1.37 57.34 102.15
Quercus ilex∗ 0.004 0.20 4.00 1.34 −2.58 0.40 3.56 −7.72 1.34 −2.21 68.52 118.79
Quercus faginea∗ 0.006 0.28 6.00 2.18 −2.32 0.70 3.54 −4.13 2.18 −1.37 71.22 122.74
Quercus suber 0.006 0.29 4.00 1.34 −2.58 0.40 4.97 −5.60 1.34 −2.21 70.28 121.37

vised the parameters of the advanced sub-model that regu-
lated plant transpiration and photosynthesis (Table B1). Note
that an evaluation of the performance of the advanced sub-
model had been conducted previously (De Cáceres et al.,
2021), using data from experimental forest plots which al-
together encompassed 6 out of the 12 species.

After revising the parameters of the advanced sub-model,
we randomly selected up to 60 SNFI3 plots with a minimum
stand basal area of 3 m2 ha−1 and where the target species
was dominant (> 80 % in basal area). Tree records corre-
sponding to species different from the target species were
discarded. Using daily weather corresponding to a single
year (year 2001), we then ran the two sub-models with un-
limited water supply (i.e., maintaining soils always at field
capacity), so that transpiration and photosynthesis estimates
were not affected by soil water deficit. The basic sub-model
was run with default values for aTmax and bTmax, i.e., using
coefficients of Eq. (B1). We found that the cohort’s annual
Ebasic/Eadvanced ratio was rather unaffected by FPAR, on av-
erage, but we found substantial differences across species
in this ratio (Fig. B1a). We used the Ebasic/Eadvanced ratio,
averaged across cohorts and plots, to scale coefficients of
Eq. (B1), obtaining estimates for aTmax and bTmax.

To obtain estimates of 9extract and cextract, the parameters
regulating the decrease of transpiration with soil drought,
we repeated the simulations with the advanced model, this
time allowing soil water extraction and removing any wa-
ter supply (i.e., without precipitation) so that transpiration
decreased following the progression of edaphic drought.
Daily Eadvanced values were divided by the corresponding
Eadvanced values under unlimited water supply, and we used
non-linear least-squares regression to fit a Weibull model

(Eq. B3) to the resulting ratio as a function of layer-averaged
soil water potential (Fig. B1b).

To estimate parameter WUEPAR, we began by calculating
annual WUEg (i.e., annualAg over annualE) for each cohort
under the advanced sub-model (and unlimited water supply).
We then calculated the ratio between WUEg of each cohort
and the plot’s maximum WUEg value. For each species, we
fitted a model of this ratio as a power function of FPAR and
took the exponent as an estimate of WUEPAR (Fig. B1c).

We then analyzed the relationship between daily WUEg
values and VPD under the advanced sub-model (and un-
limited water supply). Specifically, a power relationship
was fitted between VPD and WUEg relative to its value at
VPD= 1 kPa, except for 0 <VPD < 0.25 kPa range, where
a linear relationship was assumed to avoid unrealistic values
(Fig. B1d).

To estimate WUECO2 we conducted additional sets of
simulations with the advanced model under increasing val-
ues of [CO2], from 350 to 900 ppm (and unlimited wa-
ter supply), and fitted negative exponential models to the
ratio between Ag at each given [CO2] and of Ag under
[CO2] = 386 ppm (Fig. C1e). Finally, WUEmax estimates
were obtained by dividing annual Ag estimates over those
obtained from the sum of daily E values multiplied by
f1(FPAR), f2(VPD) and f3([CO2]) terms of Eq. (B4).

Final parameter estimates resulting from the meta-
modeling exercise are shown in Table B2. To evaluate the
improvement in sub-model similarity achieved by the meta-
modeling exercise, we repeated simulations of both the ba-
sic (default and new parameter values) and advanced sub-
models, this time under real water supply and accounting
for soil water dynamics. When replacing default parameter
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Figure B1. (a) Cohort Ebasic/Eadvanced values against their available FPAR; (b) ratio of daily Eadvanced values between simulations with
no water supply and simulations with unlimited water supply, as a function of soil water potential in the former case; (c) annual WUEg val-
ues (relative to the maximum WUEg value obtained for each plot) against available FPAR; (d) daily WUEg values (relative to WUEg at
VPD= 1 kPa) against VPD; (e) plot-level ratios between gross photosynthesis under increasing [CO2] values and gross photosynthesis un-
der [CO2] = 386 ppm. Lines of panel (a) correspond to smoothed splines, whereas those of panels (b)–(e) indicate the non-linear models
fitted for each species.

Geosci. Model Dev., 16, 3165–3201, 2023 https://doi.org/10.5194/gmd-16-3165-2023



M. De Cáceres et al.: MEDFATE 2.9.3: a trait-enabled model for Mediterranean forests 3189

Table B2. Parameter estimates obtained from the meta-modeling exercise, corresponding to Eqs. (B2)–(B4), for the 12 prioritized species.

Species aTmax bTmax 9extract cextract WUEmax WUEPAR WUECO2 WUEVPD

Abies alba 0.080 −0.0036 −1.722 1.232 7.22 0.194 0.0044 −0.433
Fagus sylvatica 0.130 −0.0058 −0.628 1.382 7.92 0.322 0.0024 −0.443
Pinus halepensis 0.138 −0.0062 −0.851 1.471 8.52 0.684 0.0025 −0.303
Pinus nigra 0.134 −0.0060 −1.095 1.238 7.46 0.273 0.0028 −0.504
Pinus pinea 0.165 −0.0074 −0.909 1.617 7.245 0.581 0.0028 −0.344
Pinus sylvestris 0.129 −0.0058 −1.041 1.256 7.60 0.326 0.0030 −0.460
Pinus uncinata 0.139 −0.0062 −1.004 1.163 5.55 0.253 0.0038 −0.326
Quercus faginea 0.125 −0.0056 −0.653 1.336 7.87 0.332 0.0021 −0.556
Quercus ilex 0.091 −0.0041 −1.660 1.065 8.45 0.252 0.0027 −0.579
Quercus pubescens 0.116 −0.0052 −0.677 1.420 8.31 0.349 0.0018 −0.519
Quercus suber 0.105 −0.0047 −1.664 1.123 9.936 0.400 0.0019 −0.634

Table B3. Linear correlation between calibrated parameters across the 75 forest plots. Upper right triangle contains Pearson’s r statistics,
and the lower left triangle contains p values (in italics).

Parameter RERsapwood RGRcambium,max SRsapwood Fraction of rocks

RERsapwood +0.119 +0.103 +0.124
RGRcambium,max 0.307 +0.066 −0.046
SRsapwood 0.378 0.571 −0.049
Fraction of rocks 0.290 0.693 0.673

values with those obtained from the meta-modeling exercise,
annual E and Ag estimates produced by the basic sub-model
resembled more closely those produced by the advanced
sub-model, although overestimation remained in some cases
(Fig. B2a–d). Soil moisture dynamics predicted by the ba-
sic sub-model under the new parameter values also matched
more closely the dynamics predicted by the advanced sub-
model (Fig. B2e and f).

B3 Details of the calibration of growth and senescence
parameters

The tree ring data set used for the calibration exercise was
sampled in 75 SNFI plots, located in pure stands whose
dominant species are F. sylvatica, P. halepensis, P. nigra,
P. sylvestris or Q. pubescens, and selected to encompass a
range of climatic aridity (Rosas et al., 2019). Tree ring se-
ries were available for five trees per plot, with samples taken
in December 2015. More information on tree-ring methods
can be found in Serra-Maluquer et al. (2018) and González
de Andrés et al. (2021). We took annual basal area incre-
ments of each tree as the observations to be matched by
model predictions of sapwood growth. Simulations were per-
formed using the basic sub-model (with parameter values
issued from the meta-modeling exercise) and daily weather
data for each target plot for the 2001–2015 period. We cal-
ibrated the three target parameters for the dominant species
and rock fragment content in each plot using a genetic algo-
rithm implemented in the R package “GA” (Scrucca, 2013).

The objective function to be minimized was the average,
across cohorts with tree ring data, of the relative mean abso-
lute error resulting from comparing observed and predicted
annual BAI series. Population size for the genetic algorithm
was set to 40 individuals, a maximum of 25 iterations were
allowed, and the procedure stopped if the best parameter
combination did not change during 5 consecutive iterations.
The distribution of final values of the objective function is
shown in Fig. B3. We did not find significant correlations
between pairs of calibrated parameters (Table B3). Estimates
for RERsapwood and RGRcambiummax were not statistically dif-
ferent across species, whereas SRsapwood was slightly signifi-
cant (Table B4; Fig. B4). In contrast, we found the calibrated
rock fraction to strongly differ across tree species, indicat-
ing differences in soil characteristics of the habitat where the
species grow. To obtain growth parameter estimates for all
tree species in the region, we examined the relationship be-
tween calibrated values and the mean annual growth rates
relative to tree perimeter, a variable that is easy to derive us-
ing data from permanent plots. The relationship turned out to
be strongly significant for RGRcambiummax (Table B4; Fig. 2).

Since the calibration exercise had been conducted using
the basic sub-model, it is expected that growth simulations
with the advanced sub-model have larger error rates and, po-
tentially, larger bias. To check this, we repeated growth sim-
ulations using the advanced sub-model, with the calibrated
parameters specific to each plot. Figure B5 shows a compar-
ison of the performance of the two sub-models. Both sub-
models slightly under-predicted observed growth, on aver-
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Table B4. Results of an analysis of covariance (ANCOVA) for the four calibrated parameters, using the mean annual relative growth rate,
species identity and their interaction as tested effects. Significant relationships are highlighted in bold.

Parameter Mean annual RGR Species Interaction

df F P value df F P value df F P value

RERsapwood 1 0.024 0.879 4 1.348 0.261 4 0.328 0.858
RGRcambium,max 1 94.81 2.54× 10−14 4 1.192 0.323 4 0.726 0.577
SRsapwood 1 0.141 0.709 4 2.558 0.045 4 0.807 0.526
Fraction of rocks 1 2.989 0.088 4 5.398 0.001 4 0.914 0.461

Figure B2. Comparison of annual E (lm2 yr−1; panels a and b), annualAg (gCm2 yr−1; panels c and d) and daily soil relative water content
(panels e and f) obtained by the basic sub-model, using the default parameter values (panels a, c, and e) or the new parameter values (panels b,
d, and f), against E predictions of the advanced sub-model. Linear relationships (dashed black lines) and the corresponding R2 values are
indicated.
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Figure B3. Distribution of the minimum value of relative mean absolute error (MAE) obtained by calibration against tree ring data for the
15 plots of each species.

Figure B4. Distribution of the calibrated across the 15 plots of each species.
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Figure B5. Distribution of mean bias and mean absolute error (MAE) of annual basal area increment predictions, obtained from simulations
with the basic and advanced sub-models and the calibrated parameters, across the 15 plots of each species. Panels (a, b) indicate mean bias
and MAE of absolute growth, whereas panels (c, d) indicate mean bias and MAE of predicted growth relative to observed values.

age, although mean bias had larger variation across forest
plots when using the advanced model. Whereas MAE of the
basic model was often below 50 % of observed growth, error
rates between 50 % and 75 % were often obtained with the
advanced model.

Appendix C: Details of the integral projection model
(IPM)

The formulation of the IPM used in this work followed
closely that of Easterling et al. (2000) with regard to adult
trees, whereas it differed substantially for ingrowth and small
trees. Below we will briefly describe the main characteristics
of the methodology as we implemented it. For further details,
see García-Callejas et al. (2017).

Models were developed for 16 main species and 5 func-
tional types, the latter including species less abundant in the

target area. We determined, for each target species or func-
tional type, the number of adult individual trees at a future
time t+1 from the number of adult individual trees at a pre-
vious time t plus tree ingrowth from saplings. In our simula-
tions, time interval 1= 10 years, which approximately cor-
responded to the mean time difference between SNFI2 and
SNFI3.

In the model, the number of adult trees at any time t +
1, NAdult(y, t +1), was determined by two contributions:
(a) the dynamics of adult trees that survived and growth
from t to t +1 and (b) the ingrowth of saplings (i.e.,
DBH < 7.5 cm) into the adult tree class:

NAdult(y, t +1)=

∫
NAdult(x, t) · S(x, . . .)

·G(x,y, . . .) · dx
+NIngrowth(y, t +1). (C1)
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Contribution (a) is represented by the integral term on the
right-hand side, whereas contribution (b) consists of an ad-
ditional term NIngrowth. In Eq. (C1), variables x and y in-
dicate the DBH of adult trees at t and t +1, respectively.
Functions S(x, . . .) and G(x,y, . . .) correspond to tree sur-
vival and tree growth, respectively. They were calculated in-
dependently for each target tree species or functional type
with data from SNFI2 and SNFI3. Their dependence on vari-
ables other than DBH (i.e., annual mean temperature, total
annual precipitation, anomalies of temperature and precipi-
tation, and basal area of the stand) is expressed in Eq. (C1)
with an ellipsis (. . . ).

Tree ingrowth was not included within the IPM integral,
unlike the formulation in Easterling et al. (2000), due to limi-
tations imposed by the SNFI sampling methodology. Instead,
we assumed that NIngrowth did not depend on DBH at time t
and took it out of the integral. We then expressed it as

NIngrowth(t +1)= I (. . .) ·ϕ(y). (C2)

Here, I indicates the number of new adult trees. It de-
pended on the number of saplings at t , the basal area of the
stand and the climatic variables described above, but not on
previous size. In turn, term ϕ(y) consisted of a truncated (i.e.,
y ≥ 7.5 cm) exponential distribution that determined the size
distribution of the new cohort of adult trees. Finally, mod-
eling of smaller trees (DBH < 7.5 cm) was carried out by
means of a zero-inflated Poisson linear regression with the
same predictor variables as I above.
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Appendix D: Detailed model evaluation results

Table D1. Results of model evaluation at the regional level in terms of annual rates of basal area (BA) changes (m2 ha−1 yr−1) predicted
for different processes and taking into account all of them. Results are shown for the two sub-models and for simulations spanning different
periods between forest inventory surveys. We also include the evaluation results of an integral projection model (IPM) calibrated using SNFI
data, for the same simulation periods and the same set of forest plots. Bias % and RMSE % result from expressing mean bias and root mean
squared error (RMSE) as percentage of the mean observed value.

Response variable Period Sub-model Mean observed Mean predicted Bias Bias (%) RMSE RMSE (%) R2

Annual BA increment due
to growth of live trees

SNFI2–3 basic 0.337 0.353 +0.015 +4.5 0.197 58.3 0.483
advanced 0.337 0.342 +0.004 +1.3 0.206 61.0 0.469

SNFI3–4 basic 0.314 0.388 +0.074 +23.6 0.211 67.2 0.366
advanced 0.314 0.366 +0.052 +16.5 0.231 73.3 0.354

SNFI2–4 basic 0.303 0.315 +0.012 +3.9 0.178 58.8 0.452
advanced 0.303 0.301 −0.002 −0.7 0.198 65.4 0.428

Annual BA decrease due to
dead trees

SNFI2–3 basic 0.034 0.039 +0.005 +13.6 0.080 234.6 0.119
advanced 0.034 0.042 +0.008 +22.6 0.092 269.4 0.058

SNFI3–4 basic 0.072 0.067 −0.006 −7.7 0.128 176.8 0.050
advanced 0.072 0.056 −0.016 −22.3 0.108 149.9 0.122

SNFI2–4 basic 0.047 0.048 +0.000 +1.0 0.078 165.6 0.140
advanced 0.047 0.041 −0.006 −13.0 0.070 148.1 0.202

Annual BA increase due to
ingrowth

SNFI2–3 basic 0.096 0.066 −0.030 −31.3 0.168 174.7 0.004
advanced 0.096 0.075 −0.021 −22.0 0.171 178.2 0.002

SNFI3–4 basic 0.075 0.074 −0.002 −2.1 0.143 189.8 0.001
advanced 0.075 0.084 +0.008 +11.0 0.147 195.3 0.004

SNFI2–4 basic 0.085 0.065 −0.020 −23.0 0.125 147.0 0.007
advanced 0.085 0.075 −0.010 −11.9 0.127 149.7 0.009

Overall annual changes in
BA

SNFI2–3 basic 0.397 0.378 −0.019 −4.7 0.318 80.2 0.120
advanced 0.397 0.375 −0.023 −5.7 0.333 83.8 0117
IPM 0397 0.556 0.158 +39.9 0.352 88.5 0.154

SNFI3–4 basic 0.337 0.403 +0.066 +19.6 0.326 96.7 0.038
advanced 0.337 0.406 +0.069 +20.5 0.350 103.8 0.061
IPM 0.337 0.556 +0.219 +65.2 0.388 115.1 0.078

SNFI2–4 basic 0.378 0.349 −0.029 −7.8 0.281 74.3 0.074
advanced 0.378 0.361 −0.017 −4.4 0.309 81.7 0.084
IPM 0.378 0.552 +0.175 +46.3 0.302 80.0 0.172

Code availability. Core model functions are coded in C++ and
linked to an R user interface. MEDFATE is distributed via the
R package “medfate”, which is available at CRAN (https://cran.
r-project.org/package=medfate, last access: 30 May 2023). The
model code to run MEDFATE (version 2.9.3) is available at https:
//doi.org/10.5281/zenodo.7695331 (De Cáceres et al., 2022).

Data availability. Weather simulation data of simulation model
used in this study are available from the EURO-CORDEX
initiative at https://www.euro-cordex.net/index.php.en (Kot-
larski et al., 2014) for noncommercial research and edu-
cational purposes. Spanish forest inventory data are avail-
able at https://www.miteco.gob.es/es/biodiversidad/temas/
inventarios-nacionales/inventario-forestal-nacional/ (Ministe-
rio de Agricultura y Pesca and Alimentación y Medio Ambiente,
2017).
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line at: https://doi.org/10.5194/gmd-16-3165-2023-supplement.
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