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A B S T R A C T   

Live Fuel Moisture Content (LFMC) is one of the main factors affecting forest ignitability as it determines the 
availability of existing live fuel to burn. Currently, LFMC is monitored through spectral vegetation indices or 
inferred from meteorological drought indices. While useful, neither approach provides mechanistic insights into 
species-specific LFMC variation and they are limited in the ability to forecast LFMC under altered future climates. 
Here, we developed a semi-mechanistic model to predict daily variation in LFMC across woody species from 
different functional types by adjusting a soil water balance model which estimates predawn leaf water potential 
(Ψpd). Our overarching goal was to balance the trade-off between biological realism, which enhances model 
applicability, and parameterization complexity, which may limit its value within operational settings. After 
calibration, model predictions were validated against a dataset comprising 1659 LFMC observations across 
peninsular Spain, belonging to different functional types and from contrasting climates. The overall goodness of 
fit for our model (R2 

= 0.5) was better than that obtained by an existing models based on drought indices (R2 
=

0.3) or spectral vegetation indices (R2 = 0.1). We observed the best predictive performance for seeding shrubs 
(R2 = 0.6) followed by trees (R2 = 0.5) and resprouting shrubs (R2 = 0.4). Through its relatively simple 
parameterization, the approach developed here may pave the way for a new generation of process-based models 
that can be used for operational purposes within fire risk mitigation scenarios.   

1. Introduction 

Wildfires are a natural component of many terrestrial ecosystems, 
but they are becoming an increasing threat to civil protection, public 
health and national security worldwide (Borchers-Arriagada et al., 
2021; Duane et al., 2021; Karavani et al., 2018; McDonald, 2020; Resco 
de Dios and Nolan, 2021; Tedim et al., 2020). Sustainable wildfire 
management should not seek to eliminate all fires in ecosystems that are 
naturally fire-prone. Instead, the target for wildfire management lies in 

creating fuel structures, from local to landscape scales, that reduce the 
risk for life and property while maintaining ecological functions. In this 
context, a key aspect for fire prevention and management actions is 
understanding the temporal changes that occur in the moisture content 
of both, dead and live fuels. Wildfires can only occur once critical fuel 
dryness thresholds are crossed (Jurdao et al., 2012; Luo et al., 2019; 
Nolan et al., 2016), and management can significantly alter fuel growth 
and provide a better knowledge of where and when live and dead fuels 
are in a critically dry state for assessing the risk of large wildfires 
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(Moreno-Gutiérrez et al., 2011). 
Wildfire activity depends on the interplay between biomass loads 

and connectivity along with the availability of such biomass to burn, 
which is strongly determined by moisture content (Boer et al., 2021). 
While dead fuel moisture content (DFMC) variations have been far 
researched (Matthews, 2014), there are significant knowledge gaps 
regarding live fuel moisture content (LFMC) variations that can be 
addressed from a plant physiology perspective. LFMC, the water content 
in live foliage and small twigs on a dry mass basis, critically affects forest 
ignitability and likelihood of fire spread (Balaguer-Romano et al., 2020; 
Gabriel et al., 2021; Pimont et al., 2019; Rossa, 2017). This is because 
the water content of live tissues acts as a heat sink, consequently 
reducing the intensity of fire and its rate of spread (Rothermel, 1983). 

In forest ecosystems, where plant biomass is inherently abundant 
enough to sustain a fire, fire activity is primarily constrained by the 
frequency and duration of dry weather periods (Boer et al., 2021). In 
Mediterranean forests and shrublands, amongst other parts of the world, 
climate aridity is projected to increase during the 21st century as a result 
of global change (IPCC, 2021). Consequently, increasing water scarcity 
may lead to longer fire seasons and higher fire danger as LFMC distri-
butions shift towards drier levels for long periods of time (Ma et al., 
2021; Resco de Dios et al., 2021). 

Many fire management agencies routinely monitor LFMC directly 
through time-consuming and expensive field inventories or indirectly 
through remote sensing products or meteorological drought indices. 
Remotely-sensed approaches, which include spectral vegetation indices 
and radiative transfer models, allow the monitoring of LFMC over large 
areas at fine spatial and temporal resolutions (Yebra et al., 2013). 
Drought indices, such as the Drought Code (DC) from the Canadian 
Forest Fire Weather Index (Van Wagner, 1974), are based on daily air 
temperature and precipitation data and are designed to conceptually 
represent water dynamics in soil reservoirs. Common limitations to both 
indirect approaches are that they provide incomplete information on 
interspecific differences, at least without a priori calibrations, and that 
forecasting relies on empirical methods. Furthermore, a number of 
studies have cast doubt on the reliability of DC as an actual proxy of 
LFMC, at least in some plant functional types in the Mediterranean basin 
(Ruffault et al., 2018; Soler Martin et al., 2017). 

The degree of variation in LFMC within a fire season varies markedly 
across life-forms, at least in Mediterranean environments (Resco de 
Dios, 2020). This variation arises from differences in physiological and 
anatomical characteristics controlling LFMC such as stomatal control, 
the degree of sclerophylly, or rooting depth (Sánchez-Martínez et al., 
2020). Empirical studies have often observed how seasonal variation in 
LFMC is largest in seeding shrubs, intermediate in resprouting shrubs 
and lowest in trees (Nolan et al., 2018; Pellizzaro et al., 2007b; Viegas 
et al., 2001). Seeding shrubs often have shallow root systems which 
cannot reach deeper water sources (Nolan et al., 2018), high resistance 
to embolism (Pausas et al., 2016) and poor stomatal controls (Resco de 
Dios, 2020), which jointly lead to the lowest LFMC values during 
drought periods and the largest seasonal variation. Resprouting shrub 
species often have deeper roots and lower drought tolerance than 
seeders, leading to intermediate variation in LFMC (Resco de Dios, 
2020). Tree species often have the deepest rooting systems and strong 
stomatal controls, which buffers against short term fluctuations in 
shallow water levels and, consequently, they often display nearly con-
stant LFMC throughout the fire season (Nolan et al., 2018; Viegas et al., 
2001). 

Nolan et al. (2020) demonstrated that inter-species variation in 
LFMC could in principle be modelled as a function of predawn leaf water 
potential (Ψpd), given information on pressure-volume relationships. 
This approach can be further simplified and LFMC may be modelled 
from Ψpd using solely a linear regression when plants are operating 
below the turgor loss point, which is the most critical from the 
perspective of fire occurrence (Nolan et al., 2018). In a case study using 
six species from a Mediterranean forest, the prediction of LFMC from Ψpd 

showed an overall goodness of fit that was better than that from existing 
drought indices (Nolan et al., 2018). To scale up from local to larger 
areas, LFMC predictions would require predictions of Ψpd which, in turn, 
is strongly related to rhizosphere soil water potential (Ψsoil). That is, Ψpd 
overnight equilibrates with Ψsoil in the absence of nocturnal transpira-
tion or significant disruptions in the soil-plant-atmosphere continuum 
(Ritchie and Hinckley, 1975). However, to our knowledge, no study has 
yet attempted large scale LFMC modelling by coupling a soil water 
balance model with a physiological model. 

MEDFATE is a forest ecosystem model designed to simulate soil and 
plant water balances in forest stands with heterogeneous structure and 
composition (De Cáceres et al., 2021, 2015). Aboveground stand struc-
ture is represented by total height, leaf area index and crown ratio of a 
set plant cohort. In MEDFATE, a plant cohort represents a set of plants 
that belong to the same species with similar structural characteristics, 
including root distribution, which is specified using the depths corre-
sponding to cumulative 50% and 95% of fine roots. Soil is represented 
using a set of vertical layers with different depths and physical proper-
ties. Finally, the model requires daily weather data as inputs to simulate 
plant hydraulics and transpiration at subdaily time steps (De Cáceres 
et al., 2015). 

Here we seek to develop a novel approach for forecasting daily 
variations in LFMC across Mediterranean species by merging soil and 
plant water potential simulations from MEDFATE (De Cáceres et al., 
2021) with previously developed Ψpd-LFMC based models (Nolan et al., 
2018). More specifically, we seek to model LFMC variation across spe-
cies grouped in three functional types (seeding shrubs, resprouting 
shrubs and trees) from Ψpd values, and compare the results with current 
approaches such as the Drought Code and remotely sensed vegetation 
indices. To this end, we used the Spanish subset of a global LFMC 
database (Yebra et al., 2019) for calibration and validation. Our ultimate 
goal was to develop an approach that can be used within operational 
settings. Considering the usual trade-off between the degree of biolog-
ical realism that is incorporated into a model and how applicable and 
easy to use the model will be, we seek to merge simplicity with bio-
logical realism to enhance applicability by making some simplifying 
assumptions on the biological differences across species. 

2. Materials and methods 

2.1. Globe-LFMC database 

Globe-LFMC is a global database of live fuel moisture content 
measured from 1383 sampling sites in 11 countries (Yebra et al., 2019). 
Each individual record represents an in situ destructive measurement of 
LFMC. We selected all sites within Spain with species specific records, 
resulting in 40 sampling sites containing 2511 individual records with 
observed LFMC. Data includes 37 species (Methods A1) from 21 
different genera covering a sampling period of 20 years from 1996 to 
2017 (Table A1). Sampling sites cover many of the contrasting climates 
and ecoregions of peninsular Spain (Fig. 1). 

Mean annual air temperature varied from 10.9 to 17.8 ◦C and mean 
annual precipitation from 243 to 1345 mm across the selected sampling 
sites (Fig. 1b, c, Table A1). Vegetation types and ecoregions ranged from 
xeric sclerophyll or Mediterranean pine forests to the more mesic Can-
tabrian mixed forests, dominated by temperate deciduous broad-leaf 
species (Fig. 1a). 

2.2. MEDFATE 

MEDFATE (version 2.2.3) is a process-based soil-vegetation-atmo-
sphere transfer model implemented in an R package, which uses soil, 
vegetation, and meteorological data to predict soil moisture dynamics 
(De Cáceres et al., 2021; Table A2). The model is based on the BILJOU 
and SIERRA water balance models (Granier et al., 1999; Mouillot et al., 
2001) and predicts, at a daily time steps, the soil water content as a 
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function of soil properties, stand structure and daily climatic variables. 
Thus, daily changes in soil water content are calculated as the difference 
between precipitation, the water input, and canopy interception, plant 
transpiration, bare soil evaporation, surface runoff and deep drainage 
(De Cáceres et al., 2021, 2015). Also, the model predicts daily plant 
transpiration and photosynthesis rates. Based on Sperry et al. (2017), 
stomatal regulation of gas exchange is simulated at sub-daily steps 
involving detailed calculations of hydraulics, leaf energy balance and 
photosynthesis. 

We divided the soil into four layers (0–10 cm, 10–20 cm, 20–60 cm 
and 60–100 cm deep). When a given soil layer is filled, water percolates 
to the next layer below, except in the deepest layer where water is lost 
from the profile via deep drainage. Soil data inputs are bulk density, the 
percentage of clay, sand, organic matter and rock fragment content, 
which were derived from the Soil Grids System at 250 m resolution 
(Hengl et al., 2017). A previous sensitivity analysis has shown that 
modelled transpiration is more sensitive to meteorological or vegetation 
inputs such as annual rainfall and leaf area index (LAI) than to soil inputs 
such as soil depth of layers or soil texture variation from clayey soils to 
sandy soils (De Cáceres et al., 2015). 

Vegetation data inputs are species identity, tree density, shrub cover, 
plant height, tree diameter at breast height and plant rooting depth. All 
data except rooting depth were obtained from the nearest plot which 
includes the target species from the Third National Forest Inventory of 
Spain (Alberdi et al., 2016), following the same approach as in previous 
publications (De Cáceres et al., 2021). MEDFATE requires the rooting 
depth where the cumulative 50% (Z50) and 95% (Z95) of fine roots 
occur. Previous studies have incorporated species-specific differences 
from a model assuming that vegetation is at eco-hydrological equilib-
rium (Cabon et al., 2018). However, to simplify model parameterization 
and diminish computational demands, we assumed that Z50 and Z95 

occurred at 10 cm and 20 cm for seeding shrubs (R-), at 20 cm and 75 cm 
for resprouting shrubs (R+) and at 20 cm and 100 cm for trees (Tr), 
respectively. We chose these depths as they are consistent with previ-
ously defined soil depths and with our assumptions that seeding shrubs 
(R-) have shallow root systems that can only access shallow water re-
sources; that tree (Tr) species have the deepest rooting systems and are 
able to extract water from superficial and also from deep layers; and that 
resprouting shrubs (R+) have an intermediate root distribution. MED-
FATE also includes a set of species-specific plant traits covering plant 
size, shrub and tree allometric coefficients to predict biomass fuel 
loading, phenology and anatomy characteristics, tissue moisture, light 
extinction, transpiration, and photosynthesis (De Cáceres et al., 2021). 
We used the default values for each species with the aim of using a 
parsimonious parameterisation to enhance the potential application of 
the model. 

Temperature, precipitation and wind speed were obtained for each 
sampling site (in a 0.1◦ x 0.1◦ grid) from the ERA-5 Land reanalysis 
dataset (Hersbach et al., 2020), which provides hourly estimates of 
climate variables from the Copernicus Climate Change Service. Daily 
meteorological variables of relative humidity, incoming solar radiation, 
and potential evapotranspiration were then obtained using the meteo-
land R package (De Cáceres et al., 2018). Relative humidity was esti-
mated assuming that dew point temperature equals the minimum 
temperature, and potential solar radiation was estimated from latitude, 
slope and aspect. Incoming solar radiation was then obtained following 
Thornton and Running (1999). 

Input data were then used to predict daily species-specific Ψpd values 
and simulations were ran with a one-year spin-up period to avoid in-
terferences from initial conditions. 

Fig. 1. Globe-LFMC sampling sites in Spain. (a) Ecoregions, (b) mean annual precipitation and (c) mean annual air temperature. Black circles indicate the location of 
our study sites. Ecoregions delimitations obtained from Dinerstein et al. (2017) and meteorological gradients from Chazarra Bernabé et al. (2018). 
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2.3. Model calibration and validation 

We divided the Globe-LFMC database into a calibration and a vali-
dation dataset. The calibration dataset was obtained by randomly 
sampling amongst sites and species using 34% of the total dataset, that 
is, 852 data points. After obtaining Ψpd from MEDFATE, we calibrated its 
relationship with LFMC based on a linear regression where, following 
Nolan et al. (2018), Ψpd had been logarithmically transformed. We used 
a single relationship between LFMC and Ψpd for all species in the entire 
dataset, instead of using separate relationships for each species. This is 
because we sought to increase model simplicity within operational set-
tings and because not all the species present in the dataset had enough 
measurements for independent calibration. The validation dataset, 
containing the remaining 1659 data points (representing 66% of the 
total), was used to validate the LFMC predictions. Model validation was 
performed by a linear regression between observed and predicted LFMC 
calculating the adjusted R-squared (R2) to measure the goodness of fit of 
our predictions, as well as the intercept (β0) and the slope (β1), and their 
95% confidence interval, to test for model prediction biases. We also 
calculated the root mean square error (RMSE) and the mean absolute 
error (MAE) to quantify the accuracy of the predictions, and the mean 
biased error (MBE; Jolliff et al., 2009) to assess if our predictions 
underpredict or overpredict observed data. 

2.4. Drought indices and spectral vegetation indices 

We compared the goodness of fit of our approach with predictions 
from existing drought indices and spectral vegetation indices using the 
same Globe-LFMC database validation dataset. We obtained Drought 
Code (DC) values using the Canadian Forest Fire Danger Rating System, 
as implemented in the cffdrs R package (Wang et al., 2017), using the 
same meteorological data sources as those previously described for 
MEDFATE, and also leaving a one year spin-up period to avoid inter-
ference from initial conditions. 

Following Marino et al. (2020), we calculated nine spectral indices 
(Table A3) to infer LFMC using data from the Moderate Resolution Im-
aging Spectrometer (MODIS) MCD43A4 Collection 6 reflectance product 
produced acquired daily tiles at 500-metre resolution. Data was down-
loaded from the NASA Land Processes Distributed Active Archive center 
(LP DAAC, https://lpdaac.usgs.gov/). Then, for each sampling date and 
site we extracted the values of each MODIS band as a simple pixel 
extraction which corresponded with the sampling site area. We 
regressed the spectral indices against observed LFMC to select the index 
with the highest adjusted R2 in subsequent analyses (Enhanced Vege-
tation Index (EVI), R2=0.33, Fig. A1). As EVI values included all the 
species present in the sampling site area, we additionally calculated the 
equivalent water thickness (EWT) from individual LFMC values to 
enhance comparability. EWT, which is a measure of water content per 
unit surface area of the vegetation (Sow et al., 2013), was calculated 
following Chakroun et al. (2015): 

EWT =
1

ρw

1
N

∑
(LFMCi)

(
1

SLAi

)

(1)  

where LFMC is the observed foliar moisture content recorded in the 
Globe-LFMC database, ρw is the density of pure water (1000 kg m − 3) 
and SLA is the specific leaf area. Species-specific SLA values were ob-
tained from the MEDFATE plant traits set. We calculated the EWT of N 
species contained in each study site for each sampling date by applying 
Eq. (1) for i species. Finally, as vegetation index signals saturate in the 
upper ranges, EVI values were logarithmically transformed before 
regression against EWT. 

2.5. Statistical analysis 

To assess for significant differences across the approaches used for 

calibration, we used an encompassing test of Davidson and MacKinnon 
(1993) with the “lmtest” R package (Zeileis and Hothorn, 2002). To 
compare two non-nested models, the test fits a third encompassing 
model which contains all regressors from both models. Then, the 
encomptest() function performs a Wald test for comparing each models 
against the encompassing model. If there are significative differences 
between each linear model against the encompassing model, the test 
indicates that both linear models are significantly different. 

3. Results 

The dataset allowed for model testing and calibration under a wide 
range of LFMC values, which varied across functional groups as ex-
pected. That is, LFMC variation was largest in seeding shrubs (45–145%, 
5 and 95% percentiles, respectively), and intermediate in resprouting 
shrubs (60–120%). Average variations in trees (75–140%) were larger 
than in shrubs due to physiological differences between Pinus and 
Quercus, although seasonal variations within each genus were smaller 
than those obtained for seeders and resprouters. Across all species and 
years, the average seasonal values varied between 125% in spring to 
80% in summer. 

3.1. Calibration, validation and comparison of MEDFATE, dc and EVI 

Using the calibration dataset, we regressed predicted Ψpd (logarith-
mically transformed), and DC values against observed LFMC, and EVI 
(logarithmically transformed) against the equivalent water thickness 
(EWT) (Fig. A2). The encompassing test of Davidson and MacKinnon 
showed significant differences (p < 0.001) in the predictions of LFMC 
based on MEDFATE and on DC, against the encompassing model which 
contains all regressors from both models. Our model showed signifi-
cantly better fit than DC (Fig. A2). EVI could not be included in this 
analysis as the response variables were different (LFMC vs EWT). Then, 
the equations derived from these linear regressions were subsequently 
applied to Ψpd, DC and EVI values obtained for the validation dataset. 
LFMC predictions using our approach (MEDFATELFMC) showed a sub-
stantial improvement over those based on the drought index (DCLFMC) 
and the spectral vegetation (EVIEWT) index (Table 1, Fig. 2). 

The overall goodness of fit of our model, MEDFATELFMC (R2 of 
observed against predicted LFMC relationship of 0.5), was better than 
for DCLFMC (R2 = 0.3) or EVIEWT (R2=0.1). The RMSE and MAE in our 
model (31 and 22%, respectively) were also smaller than in DCLFMC (34 
and 24%, respectively). It is worth noting that the goodness of fit in 
DCLFMC depended on the functional type. That is, DCLFMC showed a 
reasonable performance (R 2 = 0.5) for seeding shrubs (Fig. 2h), albeit 
lower than in our model (R2 = 0.6, Fig. 2c). However, neither DCLFMC 
nor EVIEWT were reliable predictors of LFMC or EWT respectively as the 
coefficients of determination in resprouting shrubs or trees were lower 
than R2 = 0.2 in all cases (Fig. 2). 

3.2. MEDFATELFMC features 

Despite the improvement of MEDFATELFMC over DCLFMC and EVIEWT, 
it is worth noting that our approach tended towards underprediction, 
particularly in the upper range of LFMC values (Fig. 2, Table 1). We 
observed that the slope of the observed vs predicted regression was 1.4 
and the MBE was − 8.8%, indicating this tendency towards under-
prediction. Our approach showed better goodness of fit for seeding 
shrubs (R2= 0.6, MAE =21%) than for trees (R2= 0.5, MAE =23%) or 
resprouting shrubs (R2= 0.4, MAE =21%). Also, we observed that MBE 
was lower for seeding shrubs (− 5%) than for resprouters (− 13%) or 
trees (− 16%; Table 1). Predictions of LFMC from MEDFATELFMC realis-
tically captured the differences in temporal patterns of moisture content 
(Fig. A3), across genus (Table 2) and species (exemplified in Fig. 3). 

The performance of the MEDFATELFMC model generally increased 
when examining variations at the genus level. We observed the best 
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goodness of fit across seeding genera like Cistus (R2 = 0.7, MAE = 16%), 
Thymus (R2 = 0.7, MAE = 34%), Salvia (R2 = 0.6, MAE = 24%), Lav-
andula (R2 =0.5, MAE = 53%) and Ulex (R2 =0.5, MAE = 20%). We 
observed a higher β1 for Thymus (3.9) and Lavandula (3.0), indicating 
stronger underprediction of the model, but the slope remained between 
1.1–1.5 for the other seeder shrubs. LFMC predictions for the two tree 
genera, Pinus and Quercus, showed an R2 =0.6 (Quercus) and R2 =0.5 
(Pinus) and MAE between 37% (Quercus) and 17% (Pinus). For 
resprouting shrubs, we observed a larger variation in goodness of fit, as 
the coefficient of correlation ranged from R2 = 0.3 in Erica (MAE =

18%), to R2 = 0.5 in Arbutus (MAE = 50%), R2 = 0.5 in Buxus (MAE =
11%) and R2 = 0.6 in Genista (MAE = 20%). 

4. Discussion 

We developed, calibrated and validated a novel approach to predict 
daily values of LFMC across different species after modelling Ψpd using a 
plant-soil water balance model. Our approach keeps a compromise be-
tween being mechanistic and operational, as it makes a series of 
simplifying assumptions on the rooting depth parameters which drive, 

Table 1 
Goodness of fit statistics for the three approaches used in this study: MEDFATELFMC, Drought Code (DCLFMC) used to predict LFMC, and Enhanced Vegetation Index 
(EVIEWT) used to predict EWT, for each functional type (R-, seeding shrubs; R+, resprouting shrubs; Tr, trees). We calculated the adjusted R-squared (R2), the intercept 
(β0), and the slope (β 1), with each standard error in brackets, of the regression between observed and predicted LFMC, and also the root mean square error (RMSE), 
mean absolute error (MAE) and mean biased error (MBE) and the 95% confidence interval for correlation coefficients (CIlow and CIup).   

R2 β 0 β 1 RMSE MAE MBE CIlow CIup 

MEDFATELFMC 0.5 − 25.4 (±3.1) 1.4 (±0.0) 31.1 22.3 − 8.8 1.3 1.4 
R- 0.6 − 28.9 (±3.4) 1.4 (±0.0) 28.7 21.5 − 4.8 1.3 1.4 
R+ 0.4 − 22.1 (±12.1) 1.4 (±0.1) 32.4 21.4 − 12.9 1.1 1.6 
Tr 0.5 − 22.7 (±7.7) 1.4 (±0.1) 34.7 22.7 − 15.8 1.2 1.6 
DCLFMC 0.3 − 6.2 (±3.7) 1.1 (±0.0) 33.6 24.3 − 3.4 1.0 1.2 
R- 0.5 − 46.7 (±4.3) 1.5 (±0.0) 31.3 23.4 − 4.6 1.5 1.6 
R+ 0.07 49.5 (±5.9) 0.4 (±0.1) 31.2 22.5 6.5 0.3 0.5 
Tr 0.09 44.2 (±11.1) 0.7 (±0.1) 41.6 29.5 − 14.6 0.5 1.0 
EVIEWT 0.1 − 0.001(±0.0) 1.0 (±0.0) 0.005 0.003 − 0.0002 0.9 1.2 
R- 0.1 0.001 (±0.0) 0.7 (±0.0) 0.002 0.001 0.0004 0.6 0.9 
R+ 0.2 − 0.001 (±0.0) 0.9 (±0.1) 0.004 0.003 0.0004 0.8 1.3 
Tr 0.03 − 0.004 (±0.0) 0.9 (±0.4) 0.01 0.008 − 0.0002 0.4 1.4  

Fig. 2. Observed LFMC against predicted values from MEDFATELFMC (a-d) and Drought Code (DCLFMC; f-i), and Equivalent Water Thickness against Enhanced 
Vegetation Index (EVIEWT; j-m) for all the data (a, f, j) or separately across functional types of seeding shrubs (R-; b, g, k) in blue, resprouting shrubs (R+; c, h, l) in 
purple and trees (Tr; d, I, m) in green. The line and the R2 indicate the results of least squares fitting. 
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amongst others plant traits, inter-specific and seasonal differences. 
Importantly, we were able to realistically capture seasonal variations 
(Fig. A3) in LFMC across individuals belonging to different species 
(Fig. 3), genus (Table 2) and functional types (Fig. 2), and, overall, we 
demonstrated that our approach had a higher predictive ability than 
approaches based on remotely sensed spectral vegetation indices or 
drought indices (Table 1, Fig. 2). 

Our MEDFATELFMC model was able to realistically capture the tem-
poral patterns of variation in LFMC across functional types. Following 
expectations, species with shallower root systems, such as seeding 
shrubs, showed faster LFMC reductions during the summer dry period 
(Fig. 3). On the other hand, tree species with deeper root systems were 
less responsive to seasonal dryness, showing relatively little seasonal 
variation in LFMC, consistent with their larger dependence on deep soil 
water pools. Finally, resprouting shrub species show an intermediate 
dependence on shallow and deep water pools between seeding shrubs 
and tree species, resulting in an intermediate level of seasonal LFMC 
variation (Nolan et al., 2018). 

We observed a better performance for modelling LFMC in seeding 
shrubs and trees than for resprouting shrubs. This may be due to a lack of 
temporal continuity in resprouting shrub records at most sampling sites, 
as there were only two sites with more than three consecutive weekly 
measurements. Temporal discontinuity in the data can in turn decrease 
model performance due to poor data quality (Quan et al., 2021). 
Another possibility for a poorer model performance in resprouters could 
be the smaller temporal variation in LFMC records. At any rate, our 
method for predicting LFMC in resprouters presents a significant 
improvement over existing commonly used approaches based on optical 
remote sensing and drought indices (Fig. 2). 

It is likely that LFMC predictions from our approach could be 

improved further by a more realistic description of the factors creating 
temporal variation as well as differences across species. Further studies 
using our model may derive LFMC from Ψpd as presented here (Fig. A2), 
but they are encouraged to develop their own calibration, particularly if 
dealing with very different vegetation types. Also, it is important that 
future studies consider the possibility of using species-specific pressure- 
volume curves to obtain LFMC estimates from Ψpd (Nolan et al., 2020) to 
understand whether better predictions may be obtained. 

LFMC depends on water content relative to dry mass (Pimont et al., 
2019), consequently, the incorporation of processes affecting dry mass 
may lead to further improvements (Jolly et al., 2014). Seasonal changes 
in specific leaf area, for instance, may alter maximum LFMC (Nolan 
et al., 2020). Similarly, differences in specific leaf area across species are 
likely to alter the relationship between LFMC and Ψpd. That is, at a given 
water potential (or water content), we can expect higher LFMC in spe-
cies with larger specific leaf area because dry matter content will be 
lower. A more realistic description of rooting depth may also be ach-
ieved by coupling species-specific root depth models (Cabon et al., 
2018). However, we chose not to incorporate these variables in the 
current study because we sought to develop a relatively simple model 
that could be easily regionalised to work at national scales within 
operational settings. Further research could address to which extent 
model predictions could be improved by incorporating phenological as 
well as inter-specific differences in dry mass and rooting depth. 

We observed that DC provided reliable LFMC predictions for seeding 
shrubs, but not for trees or resprouting shrubs species (Fig. 2). In the case 
of EVI, we always observed a poor relationship with EWT. LFMC varies 
over longer time-scales than the period between two consecutive MODIS 
measurements (Pellizzaro et al., 2007a; Resco de Dios et al., 2021; 
Viegas et al., 2001). The slight temporal mismatch between LFMC and 

Table 2 
Goodness of fit statistics for each genus LFMC predicted with MEDFATELFMC. Sample size (n), adjusted R-squared (R2), intercept (β0) and slope (β1), with each standard 
error in brackets, from regressing observed against predicted LFMC for all the data, and also separately for each functional type and each genus (when n>20). We also 
show the root mean squared error (RMSE), mean absolute error (MAE), and mean bias error (MBE) and the 95% confidence interval for correlation coefficients (CIlow 
and CIup).   

n R2 β0 β1 RMSE MAE MBE CIlow CIup 

Cistus (R-) 483 0.7 − 5.3 (±3.5) 1.1 (±0.0) 20.7 16.1 − 5.4 1.0 1.2 
Lavandula (R-) 33 0.5 − 149.6 (±50.6) 3.0 (±0.6) 68.4 52.9 − 34.2 1.9 4.2 
Salvia (R-) 473 0.6 − 43.2 (±5.3) 1.5 (±0.1) 30.1 24.0 − 5.6 1.4 1.6 
Thymus (R-) 47 0.7 − 251.2 (±31.3) 3.9 (±0.4) 41.8 33.6 4.9 3.2 4.7 
Ulex (R-) 46 0.5 − 19.4 (±23.1) 1.1 (±0.3) 24.2 20.5 10.7 0.6 1.7 
Arbutus (R+) 29 0.5 − 24.3 (±37.9) 1.7 (±0.3) 62.1 50.5 − 49.1 1.0 2.4 
Buxus (R+) 53 0.4 53.4 (±12.5) 0.5 (±0.1) 13.2 11.3 − 4.3 0.2 0.7 
Erica (R+) 43 0.3 4.5 (±18.1) 0.9 (±0.2) 21.2 17.6 3.4 0.5 1.3 
Genista (R+) 30 0.6 − 71.1 (±22.7) 1.7 (±0.3) 22.8 19.4 11.8 1.2 2.3 
Pinus (Tr) 121 0.5 64.4 (±16.9) 0.4 (±0.2) 20.5 16.8 − 7.2 0.1 0.7 
Quercus (Tr) 347 0.6 − 28.2 (±7.9) 1.5 (±0.1) 36.4 23.1 − 17.5 1.3 1.7  

Fig. 3. Observed (black dashed line) and MEDFATELFMC predicted (colour continuous line) LFMC seasonal dynamics across functional types, including a seeder (R-, 
Genista scorpius) in blue, a resprouting shrub (R+, Quercus coccifera) in purple and a tree (Tr, Quercus ilex) in green, in a representative sampling location (AraCin12). 
Error bars indicate standard error. 
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MODIS measurements is thus unlikely to significantly affect the results. 
Our goal was to develop a species-specific model, and, to that end, our 
approach showed a superior performance, allowing, for example, to 
model understory and overstory species separately, while remotely 
sensed models typically provide an integrated estimate. It is likely that 
EVI computed from remotely sensed imagery with higher spatial (i.e., 
Sentinel 3), will show a stronger relationship with species-specific LFMC 
values than the one shown here, but as it is an empirical approach, 
predictive capabilities would continue to be limited. However, we used 
MODIS instead as it has a longer coverage for model validation and 
overlap with the Globe-LFMC data set. It is worth noting that recent 
developments in the field of remote sensed Vegetation Optical Depth to 
detect vegetation response to water stress, also allow for enhanced re-
alism in LFMC predictions (Rao et al., 2020). Understanding the po-
tential for high resolution satellites remote sensed Vegetation Optical 
Depth approaches in monitoring species-specific variations in LFMC is 
another topic for future development. 

Despite the large amount of input data required to run MEDFATE 
simulations (Table A1), much of the complexities of state variables and 
parameters can be hidden from the user in practical operational tools. 
Our approach can be implemented within large scale fire danger forecast 
systems and may pave the way for a new generation of process-based 
models that are used for operational purposes within fire prevention 
scenarios. 

5. Conclusions 

We have developed an approach to predict LFMC by combining a 
process-based model for the estimation of Ψpd and an empirical rela-
tionship between Ψpd and LFMC that allows predictions of species- 
specific seasonal changes and forecasts of future flammability condi-
tions. Our predictions show better agreement with observed LFMC than 
drought indices or vegetation indices, not only in general terms, but also 
by species functional types and genus. Our approach can be imple-
mented within large scale fire danger forecast systems and may pave the 
way for a new generation of process-based models that are used for 
operational purposes within fire prevention scenarios. As moisture is a 
critical driver of fire behaviour and considering the projected increases 
in extreme fire weather events, we suggest the incorporation of plant 
physiological traits and process-based eco-hydrological models to better 
constrain fire behaviour projections, and also to better understand fuel 
availability dynamics for improving fire prevention actions. 
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De Cáceres, M., Mencuccini, M., Martin-StPaul, N., Limousin, J.M., Coll, L., Poyatos, R., 
Cabon, A., Granda, V., Forner, A., Valladares, F., Martínez-Vilalta, J., 2021. 
Unravelling the effect of species mixing on water use and drought stress in 
Mediterranean forests: a modelling approach. Agric. For. Meteorol. 296 https://doi. 
org/10.1016/j.agrformet.2020.108233. 

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., 
Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E.C., 
Jones, B., Barber, C.V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., 
Price, L., Baillie, J.E.M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., 
Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., De Souza, N., 
Pintea, L., Brito, J.C., Llewellyn, O.A., Miller, A.G., Patzelt, A., Ghazanfar, S.A., 
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